Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Overview

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Preface

This directory provides an implementation of the algorithms used to compute the hypergeometric tail pseudo-inverse, as well as the code used to produce all figures of the paper "Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion" by Leboeuf, LeBlanc and Marchand.

Installation

To run the scripts, one must first install the package and its requirements. To do so, run the following command from the root directory:

pip install .

Doing so will also provide you with the package hypergeo, which implements an algorithm to compute the hypergeometric tail pseudo-inverses.

Requirements

The code was written to run on Python 3.8 or more recent version. The requirements are shown in the file requirements.txt and can be installed using the command:

pip install -r requirements.txt

The code

The code is split into 2 parts: the 'hypergeo' package and the 'scripts' directory.

The hypergeo package implements the utilities regarding the hypergeometric distribution (to compute the tail and its inverse), the binomial distribution (reimplementing the inverse as the scipy version suffered from numerical unstabilities) and some generalization bounds.

The scripts files produce the figures found in the paper using the hypergeo package. All figures are generated directly in LaTeX using the package python2latex. To run a script, navigate from the command line to the directory root directory of the project and run the command

/ .py" ">
python "./scripts/
     
      /
      
       .py"

      
     

The code does not provide command line control on the parameters of each script. However, each script is fairly simple, and parameters can be directly changed in the __main__ part of the script.

Scripts used in the body of the paper

  • Section 3.3: The ghost sample trade-off. In this section, we claim that optimizing m' gives relative gain between 8% and 10%. To obtain these number, you need to run the file mprime_tradeoff/generate_mprime_data.py to first generate the data, and then run mprime_tradeoff/stats.py.

  • Section 5: Numerical comparison. Figure 1a and 1b are obtain by executing the scripts bounds_comparison/bounds_comparison_risk.py and bounds_comparison/bounds_comparison_d.py respectively. Figure 2a and 2b are obtain by executing the scripts bounds_comparison/bounds_comparison_m.py, the first setting the variable risk to 0, the second by setting it equal to 0.1.

Scripts used in the appendices of the paper

  • Appendix B: Overview of the hypergeometric distribution. Figure 3 is generated from hypergeometric_tail/hyp_tail_plot.py. Figure 4 is generated from hypergeometric_tail/hyp_tail_inv_plot.py. Algorithm 1 is implemented in the hypergeo file hypergeo/hypergeometric_distribution.py as the function hypergeometric_tail_inverse. Algorithm 2 is implemented in the hypergeo file hypergeo/hypergeometric_distribution.py as the function berkopec_hypergeometric_tail_inverse.

  • Appendix D: In-depth analysis of the ghost sample trade-off. Figure 5 is generated from mprime_tradeoff/plot_epsilon_comp.py. Figure 6 is generated from mprime_tradeoff/plot_mprime_best.py.

  • Appendix E: The hypergeometric tail inversion relative deviation bound. To generate Figure 7 and 8, you must first run the file relative_deviation_mprime_tradeoff/mprime_tradeoff_relative_deviation.py to generate the data, then run the script relative_deviation_mprime_tradeoff/plot_epsilon_comp.py to produce Figure 7 and relative_deviation_comparison/plot_mprime_best.py to produce Figure 8.

  • Appendix G: The hypergeometric tail lower bound . Figure 9 is generated from lower_bound/lower_bound_comparison_risk.py.

  • Appendix F: Further numerical comparisons. Figure 10 and 12a are generated from bounds_comparison/bounds_comparison_risk.py by changing the parameters of the scripts. Figure 11 and 12b is generated from bounds_comparison/bounds_comparison_m.py by changing the parameters of the scripts. Figure 13a and 13b are generated from bounds_comparison/sample_compression_comparison_risk.py and bounds_comparison/sample_compression_comparison_m.py respectively.

Other

The script pseudo-inverse_benchmarking/pseudo-inverse_benchmarking.py benchmarks the various algorithms used to invert the hypergeometric tail. The 'tests' directory contains unit tests using the package pytest.

Owner
Jean-Samuel Leboeuf
PhD candidate in Computer Sciences (Machine Learning). MSc in Theoretical Physics.
Jean-Samuel Leboeuf
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022