Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Overview

Learning Structural Edits via Incremental Tree Transformations

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

1. Prepare Environment

We recommend using conda to manage the environment:

conda env create -n "structural_edits" -f structural_edits.yml
conda activate structural_edits

Install the punkt tokenizer:

python
>>> import nltk
>>> nltk.download('punkt')
>>> <ctrl-D>

2. Data

Please extract the datasets and vocabulary files by:

cd source_data
tar -xzvf githubedits.tar.gz

All necessary source data has been included as the following:

| --source_data
|       |-- githubedits
|           |-- githubedits.{train|train_20p|dev|test}.jsonl
|           |-- csharp_fixers.jsonl
|           |-- vocab.from_repo.{080910.freq10|edit}.json
|           |-- Syntax.xml
|           |-- configs
|               |-- ...(model config json files)

A sample file containing 20% of the GitHubEdits training data is included as source_data/githubedits/githubedits.train_20p.jsonl for running small experiments.

We have generated and included the vocabulary files as well. To create your own vocabulary, see edit_components/vocab.py.

Copyright: The original data were downloaded from Yin et al., (2019).

3. Experiments

See training and test scripts in scripts/githubedits/. Please configure the PYTHONPATH environment variable in line 6.

3.1 Training

For training, uncomment the desired setting in scripts/githubedits/train.sh and run:

bash scripts/githubedits/train.sh source_data/githubedits/configs/CONFIGURATION_FILE

where CONFIGURATION_FILE is the json file of your setting.

Supervised Learning

For example, if you want to train Graph2Edit + Sequence Edit Encoder on GitHubEdits's 20% sample data, please uncomment only line 21-25 in scripts/githubedits/train.sh and run:

bash scripts/githubedits/train.sh source_data/githubedits/configs/graph2iteredit.seq_edit_encoder.20p.json

(Note: when you run the experiment for the first time, you might need to wait for ~15 minutes for data preprocessing.)

Imitation Learning

To further train the model with PostRefine imitation learning, please replace FOLDER_OF_SUPERVISED_PRETRAINED_MODEL with your model dir in source_data/githubedits/configs/graph2iteredit.seq_edit_encoder.20p.postrefine.imitation.json. Uncomment only line 27-31 in scripts/githubedits/train.sh and run:

bash scripts/githubedits/train.sh source_data/githubedits/configs/graph2iteredit.seq_edit_encoder.20p.postrefine.imitation.json

3.2 Test

To test a trained model, first uncomment only the desired setting in scripts/githubedits/test.sh and replace work_dir with your model directory, and then run:

bash scripts/githubedits/test.sh

4. Reference

If you use our code and data, please cite our paper:

@inproceedings{yao2021learning,
    title={Learning Structural Edits via Incremental Tree Transformations},
    author={Ziyu Yao and Frank F. Xu and Pengcheng Yin and Huan Sun and Graham Neubig},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=v9hAX77--cZ}
}

Our implementation is adapted from TranX and Graph2Tree. We are grateful to the two work!

@inproceedings{yin18emnlpdemo,
    title = {{TRANX}: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing and Code Generation},
    author = {Pengcheng Yin and Graham Neubig},
    booktitle = {Conference on Empirical Methods in Natural Language Processing (EMNLP) Demo Track},
    year = {2018}
}
@inproceedings{yin2018learning,
    title={Learning to Represent Edits},
    author={Pengcheng Yin and Graham Neubig and Miltiadis Allamanis and Marc Brockschmidt and Alexander L. Gaunt},
    booktitle={International Conference on Learning Representations},
    year={2019},
    url={https://openreview.net/forum?id=BJl6AjC5F7},
}
Owner
NeuLab
Graham Neubig's Lab at LTI/CMU
NeuLab
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022