A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

Overview

R-YOLOv4

This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection. (Final project for NCKU INTRODUCTION TO ARTIFICIAL INTELLIGENCE course)

Introduction

The objective of this project is to adapt YOLOv4 model to detecting oriented objects. As a result, modifying the original loss function of the model is required. I got a successful result by increasing the number of anchor boxes with different rotating angle and combining smooth-L1-IoU loss function proposed by R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object into the original loss for bounding boxes.

Features


Loss Function (only for x, y, w, h, theta)

loss

angle


Scheduler

Cosine Annealing with Warmup (Reference: Cosine Annealing with Warmup for PyTorch)
scheduler


Recall

recall

As the paper suggested, I get a better results from **f(ariou) = exp(1-ariou)-1**. Therefore I used it for my loss function.

Usage

  1. Clone and Setup Environment

    $ git clone https://github.com/kunnnnethan/R-YOLOv4.git
    $ cd R-YOLOv4/
    

    Create Conda Environment

    $ conda env create -f environment.yml
    

    Create Python Virtual Environment

    $ python3.8 -m venv (your environment name)
    $ source ~/your-environment-name/bin/activate
    $ pip3 install torch torchvision torchaudio
    $ pip install -r requirements.txt
    
  2. Download pretrained weights
    weights

  3. Make sure your files arrangment looks like the following
    Note that each of your dataset folder in data should split into three files, namely train, test, and detect.

    R-YOLOv4/
    ├── train.py
    ├── test.py
    ├── detect.py
    ├── xml2txt.py
    ├── environment.xml
    ├── requirements.txt
    ├── model/
    ├── datasets/
    ├── lib/
    ├── outputs/
    ├── weights/
        ├── pretrained/ (for training)
        └── UCAS-AOD/ (for testing and detection)
    └── data/
        └── UCAS-AOD/
            ├── class.names
            ├── train/
                ├── ...png
                └── ...txt
            ├── test/
                ├── ...png
                └── ...txt
            └── detect/
                └── ...png
    
  4. Train, Test, and Detect
    Please refer to lib/options.py to check out all the arguments.

Train

I have implemented methods to load and train three different datasets. They are UCAS-AOD, DOTA, and custom dataset respectively. You can check out how I loaded those dataset into the model at /datasets. The angle of each bounding box is limited in (- pi/2, pi/2], and the height of each bounding box is always longer than it's width.

You can run experiments/display_inputs.py to visualize whether your data is loaded successfully.

UCAS-AOD dataset

Please refer to this repository to rearrange files so that it can be loaded and trained by this model.
You can download the weight that I trained from UCAS-AOD.

While training, please specify which dataset you are using.
$ python train.py --dataset UCAS_AOD

DOTA dataset

Download the official dataset from here. The original files should be able to be loaded and trained by this model.

While training, please specify which dataset you are using.
$ python train.py --dataset DOTA

Train with custom dataset

  1. Use labelImg2 to help label your data. labelImg2 is capable of labeling rotated objects.
  2. Move your data folder into the R-YOLOv4/data folder.
  3. Run xml2txt.py
    1. generate txt files: python xml2txt.py --data_folder your-path --action gen_txt
    2. delete xml files: python xml2txt.py --data_folder your-path --action del_xml

A trash custom dataset that I made and the weight trained from it are provided for your convenience.

While training, please specify which dataset you are using.
$ python train.py --dataset custom

Training Log

---- [Epoch 2/2] ----
+---------------+--------------------+---------------------+---------------------+----------------------+
| Step: 596/600 | loss               | reg_loss            | conf_loss           | cls_loss             |
+---------------+--------------------+---------------------+---------------------+----------------------+
| YoloLayer1    | 0.4302629232406616 | 0.32991039752960205 | 0.09135108441114426 | 0.009001442231237888 |
| YoloLayer2    | 0.7385762333869934 | 0.5682911276817322  | 0.15651139616966248 | 0.013773750513792038 |
| YoloLayer3    | 1.5002599954605103 | 1.1116538047790527  | 0.36262497305870056 | 0.025981156155467033 |
+---------------+--------------------+---------------------+---------------------+----------------------+
Total Loss: 2.669099, Runtime: 404.888372

Tensorboard

If you would like to use tensorboard for tracking traing process.

  • Open additional terminal in the same folder where you are running program.
  • Run command $ tensorboard --logdir='weights/your_model_name/logs' --port=6006
  • Go to http://localhost:6006/

Results

UCAS_AOD

Method Plane Car mAP
YOLOv4 (smoothL1-iou) 98.05 92.05 95.05

car

plane

DOTA

DOTA have not been tested yet. (It's quite difficult to test because of large resolution of images) DOTADOTA

trash (custom dataset)

Method Plane Car mAP
YOLOv4 (smoothL1-iou) 100.00 100.00 100.00

garbage1

garbage2

TODO

  • Mosaic Augmentation
  • Mixup Augmentation

References

yangxue0827/RotationDetection
eriklindernoren/PyTorch-YOLOv3
Tianxiaomo/pytorch-YOLOv4
ultralytics/yolov5

YOLOv4: Optimal Speed and Accuracy of Object Detection

Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao

Abstract There are a huge number of features which are said to improve Convolutional Neural Network (CNN) accuracy. Practical testing of combinations of such features on large datasets, and theoretical justification of the result, is required. Some features operate on certain models exclusively and for certain problems exclusively, or only for small-scale datasets; while some features, such as batch-normalization and residual-connections, are applicable to the majority of models, tasks, and datasets...

@article{yolov4,
  title={YOLOv4: Optimal Speed and Accuracy of Object Detection},
  author={Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao},
  journal = {arXiv},
  year={2020}
}

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object

Xue Yang, Junchi Yan, Ziming Feng, Tao He

Abstract Rotation detection is a challenging task due to the difficulties of locating the multi-angle objects and separating them effectively from the background. Though considerable progress has been made, for practical settings, there still exist challenges for rotating objects with large aspect ratio, dense distribution and category extremely imbalance. In this paper, we propose an end-to-end refined single-stage rotation detector for fast and accurate object detection by using a progressive regression approach from coarse to fine granularity...

@article{r3det,
  title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
  author={Xue Yang, Junchi Yan, Ziming Feng, Tao He},
  journal = {arXiv},
  year={2019}
}
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022