PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Related tags

Deep LearningEMSRDPN
Overview

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning

This repository is for EMSRDPN introduced in the following paper

Bin-Cheng Yang and Gangshan Wu, "Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning", [arxiv]

It's an extension to a conference paper

Bin-Cheng Yang. 2019. Super Resolution Using Dual Path Connections. In Proceedings of the 27th ACM International Conference on Multimedia (MM ’19), October 21–25, 2019, Nice, France. ACM, NewYork, NY, USA, 9 pages. https://doi.org/10.1145/3343031.3350878

The code is built on EDSR (PyTorch) and tested on Ubuntu 16.04 environment (Python3.7, PyTorch_1.1.0, CUDA9.0) with Titan X/Xp/V100 GPUs.

Contents

  1. Introduction
  2. Train
  3. Test
  4. Results
  5. Citation
  6. Acknowledgements

Introduction

Deep convolutional neural networks have been demonstrated to be effective for SISR in recent years. On the one hand, residual connections and dense connections have been used widely to ease forward information and backward gradient flows to boost performance. However, current methods use residual connections and dense connections separately in most network layers in a sub-optimal way. On the other hand, although various networks and methods have been designed to improve computation efficiency, save parameters, or utilize training data of multiple scale factors for each other to boost performance, it either do super-resolution in HR space to have a high computation cost or can not share parameters between models of different scale factors to save parameters and inference time. To tackle these challenges, we propose an efficient single image super-resolution network using dual path connections with multiple scale learning named as EMSRDPN. By introducing dual path connections inspired by Dual Path Networks into EMSRDPN, it uses residual connections and dense connections in an integrated way in most network layers. Dual path connections have the benefits of both reusing common features of residual connections and exploring new features of dense connections to learn a good representation for SISR. To utilize the feature correlation of multiple scale factors, EMSRDPN shares all network units in LR space between different scale factors to learn shared features and only uses a separate reconstruction unit for each scale factor, which can utilize training data of multiple scale factors to help each other to boost performance, meanwhile which can save parameters and support shared inference for multiple scale factors to improve efficiency. Experiments show EMSRDPN achieves better performance and comparable or even better parameter and inference efficiency over SOTA methods.

Train

Prepare training data

  1. Download DIV2K training data (800 training images for x2, x3, x4 and x8) from DIV2K dataset and Flickr2K training data (2650 training images) from Flickr2K dataset.

  2. Untar the download files.

  3. Using src/generate_LR_x8.m to generate x8 LR data for Flickr2K dataset, you need to modify 'folder' in src/generate_LR_x8.m to your directory to place Flickr2K dataset.

  4. Specify '--dir_data' in src/option.py to your directory to place DIV2K and Flickr2K datasets.

For more informaiton, please refer to EDSR(PyTorch).

Begin to train

  1. Cd to 'src', run the following scripts to train models.

    You can use scripts in file 'demo.sh' to train models for our paper.

    To train a fresh model using DIV2K dataset

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K

    To train a fresh model using Flickr2K dataset

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train Flickr2K

    To train a fresh model using both DIV2K and Flickr2K datasets to reproduce results in the paper, you need copy all the files in DIV2K_HR/ to Flickr2K_HR/, copy all the directories in DIV2K_LR_bicubic/ to Flickr2K_LR_bicubic/, then using the following script

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train Flickr2K

    To continue a unfinished model using DIV2K dataset, the processes for other datasets are similiar

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --resume -1 --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --load EMSRDPN_BIx2348

Test

Quick start

  1. Download benchmark dataset from BaiduYun (access code: 20v5), place them in directory specified by '--dir_data' in src/option.py, untar it.

  2. Download EMSRDPN model for our paper from BaiduYun (access code: d2ov) and place them in 'experiment/'. Other multiple scale models can be downloaded from BaiduYun (access code: z5ey).

  3. Cd to 'src', run the following scripts to test downloaded EMSRDPN model.

    You can use scripts in file 'demo.sh' to produce results for our paper.

    To test a trained model

    CUDA_VISIBLE_DEVICES=0 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348_test --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 1 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5+Set14+B100+Urban100+Manga109 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --pre_train ../experiment/EMSRDPN_BIx2348.pt --test_only --save_results

    To test a trained model using self ensemble

    CUDA_VISIBLE_DEVICES=0 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348_test+ --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 1 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5+Set14+B100+Urban100+Manga109 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --pre_train ../experiment/EMSRDPN_BIx2348.pt --test_only --save_results --self_ensemble

    To test a trained model using multiple scale infer

    CUDA_VISIBLE_DEVICES=0 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348_test_multi_scale_infer --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 1 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --pre_train ../experiment/EMSRDPN_BIx2348.pt --test_only --save_results --multi_scale_infer

Results

All the test results can be download from BaiduYun (access code: oawz).

Citation

If you find the code helpful in your resarch or work, please cite the following papers.

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

@inproceedings{2019Super,
  title={Super Resolution Using Dual Path Connections},
  author={ Yang, Bin Cheng },
  booktitle={the 27th ACM International Conference},
  year={2019},
}

@misc{yang2021efficient,
      title={Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning}, 
      author={Bin-Cheng Yang and Gangshan Wu},
      year={2021},
      eprint={2112.15386},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Acknowledgements

This code is built on EDSR (PyTorch). We thank the authors for sharing their code.

Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022