D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Related tags

Deep LearningISC2021
Overview

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp

This is the source code of our 3rd place solution to matching track of Image Similarity Challenge (ISC) 2021 organized by Facebook AI. This repo will tell you how to get our result step by step.

Method Overview

For the Matching Track task, we use a global and local dual retrieval method. The global recall model is EsViT, the same as task Descriptor Track. The local recall used SIFT point features. As shown in the figure, our pipeline is divided into four modules. When using an image for query, it is first put into the preprocessing module for overlay detection. Then the global and local features are extracted and retrieved in parallel. There are three recall branches: global recall, original local recall and cropped local recall. The last module will compute the matching score of three branches and merge them into the final result.

method_overview

Installation

Please install python 3.7, Pytorch 1.8 (or higher version) and some packages according to requirements.txt.

gcc version 7.3.1

We run on a 8GPUs (Tesla V100-SXM2-32GB, 32510.5MB), 48CPUs and 300G Memory machine.

Get Result Demo

Now we will describe how to get our result, we use a query image Q24789.jpg as input for demo.

step1: query images preprocess

We train a yolov5 to detect the crop augment in query images. The detils are in README.md of Team: AITechnology in task Descriptor Track. Due to different parameters, we need to preprocess the local recall and global recall respectively.

python preprocessing.py $origin_image_path $save_image_result_path

e.g.
______
cd preprocess
python preprocessing_global.py ../data/queryimages/ ../data/queryimages_crop_global/
python preprocessing_local.py ../data/queryimages/ ../data/queryimages_crop_local/

*note: If Arial.ttf download fails, please copy the local yolov5/Arial.ttf to the specified directory following the command line prompt. cp yolov5/Arial.ttf /root/.config/Ultralytics/Arial.ttf

step2: get original image's local feature

First export the path.

cd local_fea/feature_extract
export LD_LIBRARY_PATH=./extLib/ 

Run the executable program localfea_extract_sift to get the SIFT local point feature, and out to a txt file.

Usage: ./localfea_extract_sift 
    
     
     
      

e.g.
./localfea_extract_sift Q24789 ../../data/queryimages/Q24789.jpg ../feature_out/Q24789.txt

     
    
   

Or you can extract all query images by a list.

python multi_extract_sift.py ../../data/querylist_demo.txt ../../data/queryimages/ ../feature_out/

For example, two point features in a image result txt file are:

Q24789_0_3.1348_65.589_1.76567_-1.09404||0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,13,0,0,0,0,0,0,16,28,7,5,0,0,0,0,0,0,0,0,20,12,0,0,23,5,0,0,29,29,7,12,56,29,5,0,0,11,7,20,38,45,10,0,0,0,0,14,0,0,0,0,39,56,36,8,39,14,0,0,46,56,21,24,56,22,0,0,5,8,8,39,38,11,0,0,0,0,19,47,0,0,0,0,8,56,56,7,37,0,0,0,10,52,56,56,52,0,0,0,0,0,35,56,11,0,0,0,0,0,54,45
Q24789_1_8.26344_431.038_1.75921_1.22328||42,27,0,4,11,12,9,14,49,28,0,6,17,25,18,14,45,37,4,0,12,45,8,9,8,17,9,0,27,50,6,0,41,24,0,0,10,14,19,20,50,34,0,6,20,22,17,21,36,22,4,4,43,50,15,12,26,32,8,0,17,50,17,6,28,12,0,0,0,21,31,21,50,14,0,0,17,31,23,38,19,10,9,17,50,50,14,15,17,23,13,10,19,45,26,8,11,11,0,0,0,6,6,0,28,13,0,0,8,20,12,15,11,9,0,0,24,47,12,9,18,38,22,6,13,28,10,8
...

step3: retrieval use original image local feature

We use the GPU Faiss to retrieval, because there are about 600 million SIFT point features in reference images. They need about 165G GPU Memory for Float16 compute.

Firstly, you need extract all local features of reference images by multi_extract_sift.py and store them in uint8 type to save space. (ref_sift_fea_300.pkl (68G) and ref_sift_name_300.pkl (25G))

Then get original image local recall result:

cd local_fea/faiss_search
python db_search.py ../feature_out/ ../faiss_out/local_pair_result.txt

For example, the result txt file ../faiss_out/local_pair_result.txt:

Q24789.jpg,R540735.jpg

step4: get crop image's local feature (only for part images which have crop result)

Same as step2, but only use the croped image in ../../preprocess/local_crop_list.txt.

cd local_fea/feature_extract
python multi_extract_sift.py ../../preprocess/local_crop_list.txt ../../data/queryimages_crop_local/ ../crop_feature_out/

step5: retrieval use crop image local feature (only for part images which have crop result)

Same as step3:

cd local_fea/faiss_search
python db_search.py ../crop_feature_out/ ../crop_faiss_out/crop_local_pair_result.txt

step6: get image's global feature

We train a EsViT model (follow the rules closely) to extract 256 dims global features, the detils are in README.md of Team: AITechnology in task Descriptor Track.

*note: for global feature, if the image have croped image, we will extract feature use the croped image, else use the origin image.

Generate h5 descriptors for all query images and reference images as submission style:

cd global_fea/feature_extract
python predict_FB_model.py --model checkpoints/EsViT_SwinB_finetune_bs8_lr0.0001_adjustlr_0_margin1.0_dataFB_epoch200.pth  --save_h5_name fb_descriptors_demo.h5  --model_type EsViT_SwinB_W14 --query ./query_list_demo.txt --total ./ref_list_demo.txt

*note: The --query and --total parameters are specified as query list and reference list, respectively.

The h5 file will be saved in ./h5_descriptors/fb_descriptors.h5

step7: retrieval use image's global feature

We have already added our h5 file in phase 1. Use faiss to get top1 pairs.

cd global_fea/faiss_search
python faiss_topk.py ../feature_extract/h5_descriptors/fb_descriptors.h5 ./global_pair_result.txt

step8: compute match score and final result

We use the SIFT feature + KNN-matching (K=2) to compute match point as score. We have already compiled it into an executable program.

Usage: ./match_score 
    
     
      
      

      
     
    
   

For example, to get original image local pairs score:

cd match_score
export LD_LIBRARY_PATH=../local_fea/feature_extract/extLib/
./match_score ../local_fea/faiss_out/local_pair_result.txt ../data/queryimages ../data/referenceimages/ ./local_pair_score.txt

The other two recall pairs are the same:

global: 
./match_score ../global_fea/faiss_search/global_pair_result.txt ../data/queryimages_crop_global ../data/referenceimages/ ./global_pair_score.txt

crop local:
./match_score ../local_fea/crop_faiss_out/crop_local_pair_result.txt ../data/queryimages_crop_local ../data/referenceimages/ ./crop_local_pair_score.txt

Finally, the three recall pairs are merged by:

python merge_score.py ./final_result.txt

Others

If you have any problem or error during running code, please email to us.

Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022