Zsseg.baseline - Zero-Shot Semantic Segmentation

Overview

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained Vision-language Model. It is based on the official repo of MaskFormer.

@article{xu2021ss,
  title={End-to-End Semi-Supervised Object Detection with Soft Teacher},
  author={Xu, Mengde and Zhang, Zheng and Hu, Han and Wang, Jianfeng and Wang, Lijuan and Wei, Fangyun and Bai, Xiang and Liu, Zicheng},
  journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

Guideline

  • Enviroment

    torch==1.8.0
    torchvision==0.9.0
    detectron2==0.5 #Following https://detectron2.readthedocs.io/en/latest/tutorials/install.html to install it and some required packages
    mmcv==1.3.14

    FurtherMore, install the modified clip package.

    cd third_party/CLIP
    python -m pip install -Ue .
  • Data Preparation

    In our experiments, four datasets are used. For Cityscapes and ADE20k, follow the tutorial in MaskFormer.

  • For COCO Stuff 164k:

    • Download data from the offical dataset website and extract it like below.
      Datasets/
           coco/
                #http://images.cocodataset.org/zips/train2017.zip
                train2017/ 
                #http://images.cocodataset.org/zips/val2017.zip
                val2017/   
                #http://images.cocodataset.org/annotations/annotations_trainval2017.zip
                annotations/ 
                #http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip
                stuffthingmaps/ 
    • Format the data to detecttron2 style and split it into Seen (Base) subset and Unseen (Novel) subset.
      python datasets/prepare_coco_stuff_164k_sem_seg.py datasets/coco
      
      python tools/mask_cls_collect.py datasets/coco/stuffthingmaps_detectron2/train2017_base datasets/coco/stuffthingmaps_detectron2/train2017_base_label_count.pkl
      
      python tools/mask_cls_collect.py datasets/coco/stuffthingmaps_detectron2/val2017 datasets/coco/stuffthingmaps_detectron2/val2017_label_count.pkl
  • For Pascal VOC 11k:

    • Download data from the offical dataset website and extract it like below.
    datasets/
       VOC2012/
            #http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
            JPEGImages/
            val.txt
            #http://home.bharathh.info/pubs/codes/SBD/download.html
            SegmentationClassAug/
            #https://gist.githubusercontent.com/sun11/2dbda6b31acc7c6292d14a872d0c90b7/raw/5f5a5270089239ef2f6b65b1cc55208355b5acca/trainaug.txt
            train.txt
            
    • Format the data to detecttron2 style and split it into Seen (Base) subset and Unseen (Novel) subset.
    python datasets/prepare_voc_sem_seg.py datasets/VOC2012
    
    python tools/mask_cls_collect.py datasets/VOC2012/annotations_detectron2/train datasets/VOC2012/annotations_detectron2/train_base_label_count.json
    
    python tools/mask_cls_collect.py datasets/VOC2012/annotations_detectron2/val datasets/VOC2012/annotations_detectron2/val_label_count.json
  • Training and Evaluation

    Before training and evaluation, see the tutorial in detectron2. For example, to training a zero shot semantic segmentation model on COCO Stuff:

  • Training with manually designed prompts:

    python train_net.py --config-file configs/coco-stuff-164k-156/zero_shot_maskformer_R101c_single_prompt_bs32_60k.yaml
    
  • Training with learned prompts:

    # Training prompts
    python train_net.py --config-file configs/coco-stuff-164k-156/zero_shot_proposal_classification_learn_prompt_bs32_10k.yaml --num-gpus 8 
    # Training seg model
    python train_net.py --config-file configs/coco-stuff-164k-156/zero_shot_maskformer_R101c_bs32_60k.yaml --num-gpus 8 MODEL.CLIP_ADAPTER.PROMPT_CHECKPOINT ${TRAINED_PROMPTS}

    Note: the prompts training will be affected by the random seed. It is better to run it multiple times.

    For evaluation, add --eval-only flag to the traing command.

  • Trained Model

    😄 Coming soon.

Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Woosung Choi 63 Nov 14, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022