Zsseg.baseline - Zero-Shot Semantic Segmentation

Overview

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained Vision-language Model. It is based on the official repo of MaskFormer.

@article{xu2021ss,
  title={End-to-End Semi-Supervised Object Detection with Soft Teacher},
  author={Xu, Mengde and Zhang, Zheng and Hu, Han and Wang, Jianfeng and Wang, Lijuan and Wei, Fangyun and Bai, Xiang and Liu, Zicheng},
  journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

Guideline

  • Enviroment

    torch==1.8.0
    torchvision==0.9.0
    detectron2==0.5 #Following https://detectron2.readthedocs.io/en/latest/tutorials/install.html to install it and some required packages
    mmcv==1.3.14

    FurtherMore, install the modified clip package.

    cd third_party/CLIP
    python -m pip install -Ue .
  • Data Preparation

    In our experiments, four datasets are used. For Cityscapes and ADE20k, follow the tutorial in MaskFormer.

  • For COCO Stuff 164k:

    • Download data from the offical dataset website and extract it like below.
      Datasets/
           coco/
                #http://images.cocodataset.org/zips/train2017.zip
                train2017/ 
                #http://images.cocodataset.org/zips/val2017.zip
                val2017/   
                #http://images.cocodataset.org/annotations/annotations_trainval2017.zip
                annotations/ 
                #http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip
                stuffthingmaps/ 
    • Format the data to detecttron2 style and split it into Seen (Base) subset and Unseen (Novel) subset.
      python datasets/prepare_coco_stuff_164k_sem_seg.py datasets/coco
      
      python tools/mask_cls_collect.py datasets/coco/stuffthingmaps_detectron2/train2017_base datasets/coco/stuffthingmaps_detectron2/train2017_base_label_count.pkl
      
      python tools/mask_cls_collect.py datasets/coco/stuffthingmaps_detectron2/val2017 datasets/coco/stuffthingmaps_detectron2/val2017_label_count.pkl
  • For Pascal VOC 11k:

    • Download data from the offical dataset website and extract it like below.
    datasets/
       VOC2012/
            #http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
            JPEGImages/
            val.txt
            #http://home.bharathh.info/pubs/codes/SBD/download.html
            SegmentationClassAug/
            #https://gist.githubusercontent.com/sun11/2dbda6b31acc7c6292d14a872d0c90b7/raw/5f5a5270089239ef2f6b65b1cc55208355b5acca/trainaug.txt
            train.txt
            
    • Format the data to detecttron2 style and split it into Seen (Base) subset and Unseen (Novel) subset.
    python datasets/prepare_voc_sem_seg.py datasets/VOC2012
    
    python tools/mask_cls_collect.py datasets/VOC2012/annotations_detectron2/train datasets/VOC2012/annotations_detectron2/train_base_label_count.json
    
    python tools/mask_cls_collect.py datasets/VOC2012/annotations_detectron2/val datasets/VOC2012/annotations_detectron2/val_label_count.json
  • Training and Evaluation

    Before training and evaluation, see the tutorial in detectron2. For example, to training a zero shot semantic segmentation model on COCO Stuff:

  • Training with manually designed prompts:

    python train_net.py --config-file configs/coco-stuff-164k-156/zero_shot_maskformer_R101c_single_prompt_bs32_60k.yaml
    
  • Training with learned prompts:

    # Training prompts
    python train_net.py --config-file configs/coco-stuff-164k-156/zero_shot_proposal_classification_learn_prompt_bs32_10k.yaml --num-gpus 8 
    # Training seg model
    python train_net.py --config-file configs/coco-stuff-164k-156/zero_shot_maskformer_R101c_bs32_60k.yaml --num-gpus 8 MODEL.CLIP_ADAPTER.PROMPT_CHECKPOINT ${TRAINED_PROMPTS}

    Note: the prompts training will be affected by the random seed. It is better to run it multiple times.

    For evaluation, add --eval-only flag to the traing command.

  • Trained Model

    😄 Coming soon.

Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023