SIR model parameter estimation using a novel algorithm for differentiated uniformization.

Overview

TenSIR

Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate matrices in tensor representation.

This repository contains the code for the paper.

Data

We used the data from the Austrian BMSGPK on the COVID-19 pandemic from March 2020 to August 2020. A CSV file containing the data used by us can be found here if the API is subject to change in the future.

Results

Kernel density estimation plot of points generated by Hamilton Monte Carlo simulation

HMC plot

The x marks the least squares estimate after grid search using the default deterministic model (system of ODEs).

Susceptible and infected people to/with COVID-19 in Austria during the early months of the pandemic

Timeline plot

Reproducing the results

Prerequisites

  • Python 3.7+ with Pip (tested with Python 3.9 and 3.10)

Setup

We advise you to use a virtual environment for running the code. After you activated it change to the source directory and run

pip install -r requirements.txt

Generating points

To exactly reproduce our results, one should use the generate-points.py script as

python generate-points.py <month> <run>

where <month> is a number from 3 (March 2020) to 8 (August 2020) and <run> specifies a number for an independent HMC run. The random number generator is seeded uniquely for each run by seed = month * 1000 + run. For the HMC simulation, we did 10 runs (with numbers 0 - 9) for each month (3 - 8) resulting in 60 runs total.

Note that the script assumes 48 CPU threads. This can be changed in the script, though diminishing returns are expected for thread counts greater than 60. More runs can of course be computed independently in parallel.

The parameters for all simulations were as follows (as seen in generate-points.py):

  • Initial parameter Theta0 = (0.1, 0.1) (*)
  • Covariance matrix M = diag(2)
  • "Learning rate" epsilon = 0.05
  • Leapfrog count L = 5 per generated point
  • Simulation until 100 points are accepted for each run
  • Discard the first 10% of accepted points as "burn-in" before plotting

(*) In our framework we use the convention Theta = (alpha, beta) and theta = (log(alpha), log(beta)) where alpha, beta are the parameters of the SIR model.

Leveraging HPC clusters

Especially for months March, April and August the simulation can take quite some time. If there is access to a compute cluster that uses slurm the slurm-job-template.sh can be utilized. Note that the venv must be setup on the target architecture.

Owner
The Spang Lab
Statistical Bioinformatics Department, University of Regensburg, Germany
The Spang Lab
Federated Learning - Including common test models for federated learning, like CNN, Resnet18 and lstm, controlled by different parser

Federated_Learning 💻 This projest include common test models for federated lear

TianyuQi 10 Dec 11, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022