Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

Overview

RSNA AI Deep Learning Lab 2021

Intro

Welcome Deep Learners!

This document provides all the information you need to participate in the RSNA AI Deep Learning Lab. This set of classes provides a hands-on opportunity to engage with deep learning tools, write basic algorithms, learn how to organize data to implement deep learning and improve your understanding of AI technology.

The classes will be held in the RSNA AI Deep Learning Lab classroom, which is located in the Lakeside Learning Center, Level 3. Here's the schedule of classes. CME credit is available for each session.

Requirements

All lessons are designed to run in Google Colab, which is a free web-based version of Jupyter hosted by Google. You will need a Google account (eg, gmail) to use Colab. If you don't already have a Google account, please create one in advance at the account sign-up page. You can delete the account when you complete the lessons if you wish.

We recommend that you use a computer with a recent vintage processor running the Chrome browser.

Lessons

Lesson : Pneumonia Detection Model Building (Beginner friendly)

Lesson : MedNIST Exam Classification with MONAI (Beginner friendly)

Lesson : DICOM Data Wrangling with Python (Beginner friendly)

Lesson : CT Body Part Classification (Beginner friendly): Notebook #1, Notebook #2

Lesson : YOLO: Bounding Box Segmentation & Classification: Practice Notebook, Complete Notebook

Lesson : Integrating Genomic and Imaging Data with TCGA-GBM

Lesson : Generative Adversarial Networks

Lesson : Object Detection & Segmentation (Beginner friendly)

Lesson : Working with Public Datasets: TCIA & IDC (Beginner friendly)

Lesson : NLP: Text Classification with RNNs & Transformers: Notebook #1, Notebook #2

Lesson : Multimodal Fusion for Pulmonary Embolism Detection Using CTs and Patient EMR

Lesson : Data Processing & Curation for Deep Learning (Beginner friendly)

Lesson : Basics of NLP in Radiology (Beginner friendly)

Class Schedule

Date / Time Class
Sun 10:30-11:30 am MedNIST Exam Classification with MONAI - Beginner friendly
Sun 1:00-2:00 pm DICOM Data Wrangling with Python - Beginner friendly
Sun 2:30-3:30 pm CT Body Part Classification - Beginner friendly
Mon 9:30-10:30 am YOLO: Bounding Box Segmentation & Classification
Mon 11:00 am-12:00 pm Integrating Genomic and Imaging Data with TCGA-GBM
Mon 1:30-2:30 pm Generative Adversarial Networks
Mon 3:00-4:00 pm Object Detection & Segmentation
Mon 4:30-5:30 pm Pneumonia Detection Model Building - Beginner friendly
Tue 11:00 am-12:00 pm Working with Public Datasets: TCIA & IDC - Beginner friendly
Tue 3:00-4:00 pm NLP: Text Classification with RNNs & Transformers
Wed 9:30-10:30 am Pneumonia Detection Model Building - Beginner friendly; Repeat
Wed 11:00 am-12:00 pm Working with Public Datasets: TCIA & IDC - Beginner friendly; Repeat
Wed 1:30-2:30 pm Multimodal Fusion for Pulmonary Embolism Detection Using CTs and Patient EMR
Wed 4:30-5:30 pm Data Processing & Curation for Deep Learning - Beginner friendly
Thu 11:00 am-12:00 pm Basics of NLP in Radiology - Beginner friendly
Owner
RSNA
RSNA
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. ๐Ÿš€ ๐Ÿš€ ๐Ÿš€

TensorLayer Community 2.9k Jan 08, 2023
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

OฤŸuzhan Ercan 6 Dec 05, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Interactive dimensionality reduction for large datasets

BlosSOM ๐ŸŒผ BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022