Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Overview

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning

Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Geonmo Gu*1, Byungsoo Ko*1, Han-Gyu Kim2 (* Authors contributed equally.)

1@NAVER/LINE Vision, 2@NAVER Clova Speech

Overview

Proxy Synthesis

  • Proxy Synthesis (PS) is a novel regularizer for any softmax variants and proxy-based losses in deep metric learning.

How it works?

  • Proxy Synthesis exploits synthetic classes and improves generalization by considering class relations and obtaining smooth decision boundaries.
  • Synthetic classes mimic unseen classes during training phase as described in below Figure.

Experimental results

  • Proxy Synthesis improves performance for every loss and benchmark dataset.

Getting Started

Installation

  1. Clone the repository locally
$ git clone https://github.com/navervision/proxy-synthesis
  1. Create conda virtual environment
$ conda create -n proxy_synthesis python=3.7 anaconda
$ conda activate proxy_synthesis
  1. Install pytorch
$ conda install pytorch torchvision cudatoolkit=<YOUR_CUDA_VERSION> -c pytorch
  1. Install faiss
$ conda install faiss-gpu cudatoolkit=<YOUR_CUDA_VERSION> -c pytorch
  1. Install requirements
$ pip install -r requirements.txt

Prepare Data

  • Download CARS196 dataset and unzip
$ wget http://imagenet.stanford.edu/internal/car196/car_ims.tgz
$ tar zxvf car_ims.tgz -C ./dataset
  • Rearrange CARS196 directory by following structure
# Dataset structure
/dataset/carDB/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  test/
    class1/
      img3.jpeg
    class2/
      img4.jpeg
# Rearrange dataset structure
$ python dataset/prepare_cars.py

Train models

Norm-SoftMax loss with CARS196

# Norm-SoftMax
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_norm_softmax \
--data=./dataset/carDB --data_name=cars196 \
--dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Norm_SoftMax \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=23.0 --check_epoch=5

PS + Norm-SoftMax loss with CARS196

# PS + Norm-SoftMax
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_PS_norm_softmax \
--data=./dataset/carDB --data_name=cars196 \
 --dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Norm_SoftMax \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=23.0 --check_epoch=5 \
--ps_alpha=0.40 --ps_mu=1.0

Proxy-NCA loss with CARS196

# Proxy-NCA
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_proxy_nca \
--data=./dataset/carDB --data_name=cars196 \
--dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Proxy_NCA \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=12.0 --check_epoch=5

PS + Proxy-NCA loss with CARS196

# PS + Proxy-NCA
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_PS_proxy_nca \
--data=./dataset/carDB --data_name=cars196 \
--dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Proxy_NCA \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=12.0 --check_epoch=5 \
--ps_alpha=0.40 --ps_mu=1.0

Check Test Results

$ tensorboard --logdir=logs --port=10000

Experimental results

  • We report [email protected], RP and MAP performances of each loss, which are trained with CARS196 dataset for 8 runs.

[email protected]

Loss 1 2 3 4 5 6 7 8 Mean ± std
Norm-SoftMax 83.38 83.25 83.25 83.18 83.05 82.90 82.83 82.79 83.08 ± 0.21
PS + Norm-SoftMax 84.69 84.58 84.45 84.35 84.22 83.95 83.91 83.89 84.25 ± 0.31
Proxy-NCA 83.74 83.69 83.62 83.32 83.06 83.00 82.97 82.84 83.28 ± 0.36
PS + Proxy-NCA 84.52 84.39 84.32 84.29 84.22 84.12 83.94 83.88 84.21 ± 0.21

RP

Loss 1 2 3 4 5 6 7 8 Mean ± std
Norm-SoftMax 35.85 35.51 35.28 35.28 35.24 34.95 34.87 34.84 35.23 ± 0.34
PS + Norm-SoftMax 37.01 36.98 36.92 36.74 36.74 36.73 36.54 36.45 36.76 ± 0.20
Proxy-NCA 36.08 35.85 35.79 35.66 35.66 35.63 35.47 35.43 35.70 ± 0.21
PS + Proxy-NCA 36.97 36.84 36.72 36.64 36.63 36.60 36.43 36.41 36.66 ± 0.18

MAP

Loss 1 2 3 4 5 6 7 8 Mean ± std
Norm-SoftMax 25.56 25.56 25.00 24.93 24.90 24.59 24.57 24.56 24.92 ± 0.35
PS + Norm-SoftMax 26.71 26.67 26.65 26.56 26.53 26.52 26.30 26.17 26.51 ± 0.18
Proxy-NCA 25.66 25.52 25.37 25.36 25.33 25.26 25.22 25.04 25.35 ± 0.18
PS + Proxy-NCA 26.77 26.63 26.50 26.42 26.37 26.31 26.25 26.12 26.42 ± 0.20

Performance Graph

  • Below figure shows performance graph of test set during training.

Reference

  • Our code is based on SoftTriple repository (Arxiv, Github)

Citation

If you find Proxy Synthesis useful in your research, please consider to cite the following paper.

@inproceedings{gu2020proxy,
    title={Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning},
    author={Geonmo Gu, Byungsoo Ko, and Han-Gyu Kim},
    booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
    year={2021}
}

License

Copyright 2021-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
NAVER/LINE Vision
Open source repository of Vision, NAVER & LINE
NAVER/LINE Vision
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022