IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

Related tags

Deep Learningijon
Overview

IJON SPACE EXPLORER

loading-ag-167

IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotation, one can help the fuzzer solve previously unsolvable challenges. For example, with this extension, a fuzzer is able to play and solve games such as Super Mario Bros. or resolve more complex patterns such as hash map lookups.

More data and the results of the experiments can be found here:

Compile AFL+IJON

after compiling AFL as usually, run:

cd llvm_mode
LLVM_CONFIG=llvm-config-6.0 CC=clang-6.0 make

Annotations

When using afl-clang-fastwith Ijon, you can use the following annotations & helper functions in you program to guide AFL.

void ijon_xor_state(ijon_u32_t);
void ijon_push_state(ijon_u32_t);

void ijon_map_inc(ijon_u32_t);
void ijon_map_set(ijon_u32_t);

ijon_u32_t ijon_strdist(char* a,char* b);
ijon_u32_t ijon_memdist(char* a,char* b, ijon_size_t len);

void ijon_max(ijon_u32_t addr, ijon_u64_t val);

void ijon_min(ijon_u32_t addr, ijon_u64_t val);

ijon_u64_t ijon_simple_hash(ijon_u64_t val);
ijon_u32_t ijon_hashint(ijon_u32_t old, ijon_u32_t val);
ijon_u32_t ijon_hashstr(ijon_u32_t old, char* val);
ijon_u32_t ijon_hashmem(ijon_u32_t old, char* val, ijon_size_t len);

uint32_t ijon_hashstack(); //warning, can be flaky as stackunwinding is nontrivial

void ijon_enable_feedback();
void ijon_disable_feedback();

#define _IJON_CONCAT(x, y) x##y
#define _IJON_UNIQ_NAME() IJON_CONCAT(temp,__LINE__)
#define _IJON_ABS_DIST(x,y) ((x)<(y) ? (y)-(x) : (x)-(y))

#define IJON_BITS(x) ((x==0)?{0}:__builtin_clz(x))
#define IJON_INC(x) ijon_map_inc(ijon_hashstr(__LINE__,__FILE__)^(x))
#define IJON_SET(x) ijon_map_set(ijon_hashstr(__LINE__,__FILE__)^(x))

#define IJON_CTX(x) ({ uint32_t hash = hashstr(__LINE__,__FILE__); ijon_xor_state(hash); __typeof__(x) IJON_UNIQ_NAME() = (x); ijon_xor_state(hash); IJON_UNIQ_NAME(); })

#define IJON_MAX(x) ijon_max(ijon_hashstr(__LINE__,__FILE__),(x))
#define IJON_MIN(x) ijon_max(ijon_hashstr(__LINE__,__FILE__),0xffffffffffffffff-(x))
#define IJON_CMP(x,y) IJON_INC(__builtin_popcount((x)^(y)))
#define IJON_DIST(x,y) ijon_min(ijon_hashstr(__LINE__,__FILE__), _IJON_ABS_DIST(x,y))
#define IJON_STRDIST(x,y) IJON_SET(ijon_hashint(ijon_hashstack(), ijon_strdist(x,y)))

TIPS on using IJON

You typically want to run AFL with IJON extension in slave mode with multiple other fuzzer instances. If IJON solved the challenging structure, the other fuzzers will pick up the resulting inputs, while ignoring the intermediate queue entries that IJON produced.

If you make extensive use of the IJON_MIN or IJON_MAX primitives, you might want to disable normal instrumentation using AFL_INST_RATIO=1 make.

If, for some reason you want to use the version exactly from the paper (even though it contains known bugs), please use this commit

Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022