IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

Related tags

Deep Learningijon
Overview

IJON SPACE EXPLORER

loading-ag-167

IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotation, one can help the fuzzer solve previously unsolvable challenges. For example, with this extension, a fuzzer is able to play and solve games such as Super Mario Bros. or resolve more complex patterns such as hash map lookups.

More data and the results of the experiments can be found here:

Compile AFL+IJON

after compiling AFL as usually, run:

cd llvm_mode
LLVM_CONFIG=llvm-config-6.0 CC=clang-6.0 make

Annotations

When using afl-clang-fastwith Ijon, you can use the following annotations & helper functions in you program to guide AFL.

void ijon_xor_state(ijon_u32_t);
void ijon_push_state(ijon_u32_t);

void ijon_map_inc(ijon_u32_t);
void ijon_map_set(ijon_u32_t);

ijon_u32_t ijon_strdist(char* a,char* b);
ijon_u32_t ijon_memdist(char* a,char* b, ijon_size_t len);

void ijon_max(ijon_u32_t addr, ijon_u64_t val);

void ijon_min(ijon_u32_t addr, ijon_u64_t val);

ijon_u64_t ijon_simple_hash(ijon_u64_t val);
ijon_u32_t ijon_hashint(ijon_u32_t old, ijon_u32_t val);
ijon_u32_t ijon_hashstr(ijon_u32_t old, char* val);
ijon_u32_t ijon_hashmem(ijon_u32_t old, char* val, ijon_size_t len);

uint32_t ijon_hashstack(); //warning, can be flaky as stackunwinding is nontrivial

void ijon_enable_feedback();
void ijon_disable_feedback();

#define _IJON_CONCAT(x, y) x##y
#define _IJON_UNIQ_NAME() IJON_CONCAT(temp,__LINE__)
#define _IJON_ABS_DIST(x,y) ((x)<(y) ? (y)-(x) : (x)-(y))

#define IJON_BITS(x) ((x==0)?{0}:__builtin_clz(x))
#define IJON_INC(x) ijon_map_inc(ijon_hashstr(__LINE__,__FILE__)^(x))
#define IJON_SET(x) ijon_map_set(ijon_hashstr(__LINE__,__FILE__)^(x))

#define IJON_CTX(x) ({ uint32_t hash = hashstr(__LINE__,__FILE__); ijon_xor_state(hash); __typeof__(x) IJON_UNIQ_NAME() = (x); ijon_xor_state(hash); IJON_UNIQ_NAME(); })

#define IJON_MAX(x) ijon_max(ijon_hashstr(__LINE__,__FILE__),(x))
#define IJON_MIN(x) ijon_max(ijon_hashstr(__LINE__,__FILE__),0xffffffffffffffff-(x))
#define IJON_CMP(x,y) IJON_INC(__builtin_popcount((x)^(y)))
#define IJON_DIST(x,y) ijon_min(ijon_hashstr(__LINE__,__FILE__), _IJON_ABS_DIST(x,y))
#define IJON_STRDIST(x,y) IJON_SET(ijon_hashint(ijon_hashstack(), ijon_strdist(x,y)))

TIPS on using IJON

You typically want to run AFL with IJON extension in slave mode with multiple other fuzzer instances. If IJON solved the challenging structure, the other fuzzers will pick up the resulting inputs, while ignoring the intermediate queue entries that IJON produced.

If you make extensive use of the IJON_MIN or IJON_MAX primitives, you might want to disable normal instrumentation using AFL_INST_RATIO=1 make.

If, for some reason you want to use the version exactly from the paper (even though it contains known bugs), please use this commit

Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022