Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Overview

EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Audio samples are available on our demo page.

Abstract

We present EdiTTS, an off-the-shelf speech editing methodology based on score-based generative modeling for text-to-speech synthesis. EdiTTS allows for targeted, granular editing of audio, both in terms of content and pitch, without the need for any additional training, task-specific optimization, or architectural modifications to the score-based model backbone. Specifically, we apply coarse yet deliberate perturbations in the Gaussian prior space to induce desired behavior from the diffusion model, while applying masks and softening kernels to ensure that iterative edits are applied only to the target region. Listening tests demonstrate that EdiTTS is capable of reliably generating natural-sounding audio that satisfies user-imposed requirements.

Citation

Please cite this work as follows.

@misc{tae&kim2021editts,
      title={EdiTTS: Score-based Editing for Controllable Text-to-Speech}, 
      author={Jaesung Tae and Hyeongju Kim and Taesu Kim},
      year={2021}
}

Setup

  1. Create a Python virtual environment (venv or conda) and install package requirements as specified in requirements.txt.

    python -m venv venv
    source venv/bin/activate
    pip install -U pip
    pip install -r requirements.txt
  2. Build the monotonic alignment module.

    cd model/monotonic_align
    python setup.py build_ext --inplace

For more information, refer to the official repository of Grad-TTS.

Checkpoints

The following checkpoints are already included as part of this repository, under checkpts.

Pitch Shifting

  1. Prepare an input file containing samples for speech generation. Mark the segment to be edited via a vertical bar separator, |. For instance, a single sample might look like

    In | the face of impediments confessedly discouraging |

    We provide a sample input file in resources/filelists/edit_pitch_example.txt.

  2. To run inference, type

    CUDA_VISIBLE_DEVICES=0 python edit_pitch.py \
        -f resources/filelists/edit_pitch_example.txt \
        -c checkpts/grad-tts-old.pt -t 1000 \
        -s out/pitch/wavs

    Adjust CUDA_VISIBLE_DEVICES as appropriate.

Content Replacement

  1. Prepare an input file containing pairs of sentences. Concatenate each pair with # and mark the parts to be replaced with a vertical bar separator. For instance, a single pair might look like

    Three others subsequently | identified | Oswald from a photograph. #Three others subsequently | recognized | Oswald from a photograph.

    We provide a sample input file in resources/filelists/edit_content_example.txt.

  2. To run inference, type

    CUDA_VISIBLE_DEVICES=0 python edit_content.py \
        -f resources/filelists/edit_content_example.txt \
        -c checkpts/grad-tts-old.pt -t 1000 \
        -s out/content/wavs

References

License

Released under the modified GNU General Public License.

Owner
Neosapience
Neosapience, an artificial being enabled by artificial intelligence, will soon be everywhere in our daily lives.
Neosapience
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022