Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Overview

EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Audio samples are available on our demo page.

Abstract

We present EdiTTS, an off-the-shelf speech editing methodology based on score-based generative modeling for text-to-speech synthesis. EdiTTS allows for targeted, granular editing of audio, both in terms of content and pitch, without the need for any additional training, task-specific optimization, or architectural modifications to the score-based model backbone. Specifically, we apply coarse yet deliberate perturbations in the Gaussian prior space to induce desired behavior from the diffusion model, while applying masks and softening kernels to ensure that iterative edits are applied only to the target region. Listening tests demonstrate that EdiTTS is capable of reliably generating natural-sounding audio that satisfies user-imposed requirements.

Citation

Please cite this work as follows.

@misc{tae&kim2021editts,
      title={EdiTTS: Score-based Editing for Controllable Text-to-Speech}, 
      author={Jaesung Tae and Hyeongju Kim and Taesu Kim},
      year={2021}
}

Setup

  1. Create a Python virtual environment (venv or conda) and install package requirements as specified in requirements.txt.

    python -m venv venv
    source venv/bin/activate
    pip install -U pip
    pip install -r requirements.txt
  2. Build the monotonic alignment module.

    cd model/monotonic_align
    python setup.py build_ext --inplace

For more information, refer to the official repository of Grad-TTS.

Checkpoints

The following checkpoints are already included as part of this repository, under checkpts.

Pitch Shifting

  1. Prepare an input file containing samples for speech generation. Mark the segment to be edited via a vertical bar separator, |. For instance, a single sample might look like

    In | the face of impediments confessedly discouraging |

    We provide a sample input file in resources/filelists/edit_pitch_example.txt.

  2. To run inference, type

    CUDA_VISIBLE_DEVICES=0 python edit_pitch.py \
        -f resources/filelists/edit_pitch_example.txt \
        -c checkpts/grad-tts-old.pt -t 1000 \
        -s out/pitch/wavs

    Adjust CUDA_VISIBLE_DEVICES as appropriate.

Content Replacement

  1. Prepare an input file containing pairs of sentences. Concatenate each pair with # and mark the parts to be replaced with a vertical bar separator. For instance, a single pair might look like

    Three others subsequently | identified | Oswald from a photograph. #Three others subsequently | recognized | Oswald from a photograph.

    We provide a sample input file in resources/filelists/edit_content_example.txt.

  2. To run inference, type

    CUDA_VISIBLE_DEVICES=0 python edit_content.py \
        -f resources/filelists/edit_content_example.txt \
        -c checkpts/grad-tts-old.pt -t 1000 \
        -s out/content/wavs

References

License

Released under the modified GNU General Public License.

Owner
Neosapience
Neosapience, an artificial being enabled by artificial intelligence, will soon be everywhere in our daily lives.
Neosapience
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022