Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Overview

Event Sourced Bank

A "wide but shallow" example of using the Python event sourcing library. "Wide" in the sense that it covers most features in the library; "shallow" in the sense that the use of each is trivial. It's purpose is not to be an authentic bank: it's to demonstrate the various library components in an example where the domain model itself affords no learning curve.

Overview

The domain model is simple. It comprises only 2 classes, both in the domain model file. Account models a trivial bank account as an event-sourced Domain-Driven Design Aggregate. Ledger is an equally simple abstraction of a ledger, again modelled as a DDD Aggregate.

The idea is that all transactions on all accounts get recorded in the ledger:

  • Each transaction on each account generates an event;
  • The ledger listens to those events, and is updated accordingly.

Implementation

The Account and Ledger aggregates are implemented using the eventsourcing library's Aggregate base class.

Each aggregate is wrapped in a service. The AccountService uses the eventsourcing library's Application class, and provides an API for creating/retrieving accounts and then acting on them. The LedgerService is implemented using the library's ProcessApplication. Its purpose is to follow all transactions on all accounts, so a single ledger tracks the overall balance in the bank.

The EventSourcedBank class ties everything together. It wires the AccountService and LedgerService together, so transactions on Accounts are recorded in the Ledger. There's a minimal main that creates a system and runs a few transactions through.

Snapshots

The eventsourcing lib reconstructs aggregates from the events that create and evolve them. That's consistent with the fundamental notion of event sourcing: store the events that change state over time, rather than storing the current state directly. It can, however, give rise to a performance problem with long-running aggregates. Each time an aggregate is retrieved - such as the calls to repository.get(account_id) in the AccountService - the aggregate is re-constructed from its event history. That history grown monotonically over time. Reconstructing the aggregate therefore takes proportionally longer as the aggregate evolves.

The library provides snapshots as a way to deal with this issue. It's as the name suggests; snapshots store the aggregate's state at given points. Re-constructing from a snapshot therefore removes the need to iterate over history prior to the snapshot being taken. Snapshots are well explained in the docs so not worth repeating here. Suffice to say there are various options that cover the spectrum from simple defaults to highly configurable options.

Given that this example intends to be "wide and shallow", it's appropriate to include the snapshotting construct. It's equally appropriate to use the simplest thing that could possibly work. Hence each of the services (AccountService, LedgerService) employ automatic snapshotting. That's enabled by a single line of code in each class; e.g.

  class AccountService(Application):
     snapshotting_intervals = {Account: 50}

Installation

  1. Clone this repo:

     $ cd /my/projects/dir
     $ git clone https://github.com/sfinnie/event_sourced_bank.git
     $ cd event_sourced_bank
    
  2. (optional but recommended): create a virtual environment:

     $ python3 -m venv venv
     $ source venv/bin/activate
    
  3. Install dependencies

     $ python3 -m pip install -U pip
     $ python3 -m pip install eventsourcing pytest
    

Running

There's a minimal, trivial, script to run the app:

$ python3 main.py

Testing

There are a few tests, more as examples than a comprehensive test suite at the moment. To be enhanced. To run:

$ pytest
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022