torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

Overview

torchsummaryDynamic

Improved tool of torchsummaryX.

torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Usage

from torchsummaryDynamic import summary
summary(your_model, torch.zeros((1, 3, 224, 224)))

# or

from torchsummaryDynamic import summary
summary(your_model, torch.zeros((1, 3, 224, 224)), calc_op_types=(nn.Conv2d, nn.Linear))

Args:

  • model (Module): Model to summarize
  • x (Tensor): Input tensor of the model with [N, C, H, W] shape dtype and device have to match to the model
  • calc_op_types (Tuple): Tuple of op types to be calculated
  • args, kwargs: Other arguments used in model.forward function

Examples

Calculate Dynamic Conv2d FLOPs/params

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummaryDynamic import summary

class USConv2d(nn.Conv2d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, us=[False, False]):
        super(USConv2d, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
        self.width_mult = None
        self.us = us

    def forward(self, inputs):
        in_channels = inputs.shape[1] // self.groups if self.us[0] else self.in_channels // self.groups
        out_channels = int(self.out_channels * self.width_mult) if self.us[1] else self.out_channels

        weight = self.weight[:out_channels, :in_channels, :, :]
        bias = self.bias[:out_channels] if self.bias is not None else self.bias

        y = F.conv2d(inputs, weight, bias, self.stride, self.padding, self.dilation, self.groups)
        return y

model = nn.Sequential(
    USConv2d(3, 32, 3, us=[True, True]),
)

# width_mult=1.0
model.apply(lambda m: setattr(m, 'width_mult', 1.0))
summary(model, torch.zeros(1, 3, 224, 224))

# width_mult=0.5
model.apply(lambda m: setattr(m, 'width_mult', 0.5))
summary(model, torch.zeros(1, 3, 224, 224))

Output

# width_mult=1.0
==========================================================
        Kernel Shape       Output Shape  Params  Mult-Adds
Layer                                                     
0_0    [3, 32, 3, 3]  [1, 32, 222, 222]     896   42581376
----------------------------------------------------------
                        Totals
Total params               896
Trainable params           896
Non-trainable params         0
Mult-Adds             42581376
==========================================================

# width_mult=0.5
==========================================================
        Kernel Shape       Output Shape  Params  Mult-Adds
Layer                                                     
0_0    [3, 32, 3, 3]  [1, 16, 222, 222]     896   21290688
----------------------------------------------------------
                        Totals
Total params               896
Trainable params           896
Non-trainable params         0
Mult-Adds             21290688
==========================================================
Owner
Bohong Chen
Bohong Chen
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

į¨‹æ˜Ÿ 87 Dec 24, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
đŸĻ Quickly annotate data from the comfort of your Jupyter notebook

đŸĻ pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [ĐĨĐ°ĐąŅ€] [Model Card] [Colab] [Kaggle] RuDOLPH đŸĻŒ 🎄 â˜ƒī¸ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | įŽ€äŊ“中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023