One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Overview

Introduction

  • One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".
  • Users can apply it to parse the input text from scratch, and get the EDU segmentations and the parsed tree structure.
  • The model supports both sentence-level and document-level RST discourse parsing.
  • This repo and the pre-trained model is only for research use.

Package Requirements

  1. pytorch==1.7.1
  2. transformers==4.8.2

Supported Languages

We trained and evaluated the model with the multilingual collection of RST discourse treebanks, and it natively supports 6 languages: English, Portuguese, Spanish, German, Dutch, Basque. Interested users can also try other languages.

Data Format

  • [Input] InputSentence: The input document/sentence, and the raw text will be tokenizaed and encoded by the xlm-roberta-base language backbone. '|| ' denotes the EDU boundary positions.

    • Although the report, || which has released || before the stock market opened, || didn't trigger the 190.58 point drop in the Dow Jones Industrial Average, || analysts said || it did play a role in the market's decline. ||
  • [Output] EDU_Breaks: The indices of the EDU boundary tokens, including the last word of the sentence.

    • [2, 5, 10, 22, 24, 33]
  • [Output] tree_parsing_output: The model outputs of the discourse parsing tree follow this format.

    • (1:Satellite=Contrast:4,5:Nucleus=span:6) (1:Nucleus=Same-Unit:3,4:Nucleus=Same-Unite:4) (5:Satellite=Attribution:5,6:Nucleus=span:6) (1:Satellite=span:1,2:Nucleus=Elaboration:3) (2:Nucleus=span:2,3:Satellite=Temporal:3)

How to use it for parsing

  • Put the text paragraph to the file ./data/text_for_inference.txt.
  • Run the script MUL_main_Infer.py to obtain the RST parsing result. See the script for detailed model output.
  • We recommend users to run the parser on a GPU-equipped environment.

Citation

@article{liu2021dmrst,
  title={DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing},
  author={Liu, Zhengyuan and Shi, Ke and Chen, Nancy F},
  journal={arXiv preprint arXiv:2110.04518},
  year={2021}
}
@inproceedings{liu2020multilingual,
  title={Multilingual Neural RST Discourse Parsing},
  author={Liu, Zhengyuan and Shi, Ke and Chen, Nancy},
  booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
  pages={6730--6738},
  year={2020}
}
Owner
seq-to-mind
seq-to-mind
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022