Dataloader tools for language modelling

Overview

Installation:

pip install lm_dataloader

Design Philosophy

  • A library to unify lm dataloading at large scale

  • Simple interface, any tokenizer can be integrated

  • Minimal changes needed from small -> large scale (many multiple GPU nodes)

  • follows fairseq / megatron's 'mmap' dataformat, but with improvements. Those being:

    • Easily combine multiple datasets
    • Easily split a dataset into train / val / test splits
    • Easily build a weighted dataset out of a list of existing ones along with weights.
    • unified into a single 'file' (which is actually a directory containing a .bin / .idx file)
    • index files that are built on the fly are hidden files, leaving less mess in the directory.
    • More straightforward interface, better documentation.
    • Inspectable with a command line tool
    • Can load from urls
    • Can load from S3 buckets
    • Can load from GCS buckets
    • Can tokenize on the fly instead of preprocessing

Misc. TODO: - [ ] Option to set mpu globally (for distributed dataloading)

Example usage

To tokenize a dataset contained in a .jsonl file (where the text to be tokenized can be accessed under the 'text' key):

import lm_dataloader as lmdl
from transformers import GPT2TokenizerFast 

jsonl_path = "test.jsonl"
output = "my_dataset.lmd"
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')

lmdl.encode(
    jsonl_path,
    output_prefix=output,
    tokenize_fn=tokenizer.encode,
    tokenizer_vocab_size=len(tokenizer),
    eod_token=tokenizer.eos_token_id,
)

This will create a dataset at "my_dataset.lmd" which can be loaded as an indexed torch dataset like so:

from lm_dataloader import LMDataset
from transformers import GPT2TokenizerFast 

tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
seq_length = tokenizer.model_max_length # or whatever the sequence length of your model is

dataset = LMDataset("my_dataset.lmd", seq_length=seq_length)

# peek at 0th index
print(dataset[0])

Command line utilities

There are also command line utilities provided to inspect / merge datasets, e.g:

lm-dataloader inspect my_dataset.lmd

Launches an interactive terminal to inspect the data in my_dataset.lmd

And:

lm-dataloader merge my_dataset.lmd,my_dataset_2.lmd new_dataset.lmd

Merges the datasets at "my_dataset.lmd" and "my_dataset_2.lmd" into a new file at "new_dataset.lmd".

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021