AITUS - An atomatic notr maker for CYTUS

Related tags

Deep LearningAITUS
Overview

AITUS

an automatic note maker for CYTUS.

利用AI根据指定乐曲生成CYTUS游戏谱面。

效果展示:https://www.bilibili.com/video/BV1Lf4y1F7aq

这只是作者的一个初次尝试,欢迎感兴趣的小伙伴进行优化或提出新方法!

共享链接

下面的3、4部分介绍了AITUS的使用方法,比较繁琐,且需要安装许多软件。鉴于此,作者在这里设置了一个共享链接,用于分享AITUS创作的游戏谱面。

链接:https://pan.baidu.com/s/1dGaLOuBKdeXBRZt1NuP9WA?pwd=aicy 提取码:aicy

您可以私信给作者您想要创作谱面的乐曲,作者生成谱面后会上传到这个链接里。

前置准备

使用AITUS一共需要以下软件作为辅助:

  • 格式工厂(或其他音频文件格式转化软件)
  • MixMeister BPM Analyzer,用于获取乐曲bpm
  • Cylheim,CYTUS游戏谱面制作器
  • Python3
  • PyTorch2

使用说明

【step 1】

将乐曲转为wav格式。

【step 2】

使用软件【MixMeister BPM Analyzer】测量乐曲的bpm。

【step 3】

使用【Cylheim】创建空谱面,创建空谱面时需要导入乐曲、bpm等信息。创建好的谱面是一个json文件。该json文件的命名应与乐曲文件的命名相同。

【step 4】

将创建好的谱面json文件、乐曲wav文件、model下的四个pt文件、code下的【NoteMake.py】放在同一目录下,并修改【NoteMake.py】中如下图所示的乐曲信息:

image-20220119105537401

然后运行NoteMake.py,约5-10分钟后运行结束,得到生成的json谱面文件(命名与乐曲命名相同)。

【step 5】

用生成的json去替换原【Cylheim】项目下的json文件,然后打开【Cylheim】项目即可看见和演示生成的谱面。

原理简介

训练数据来自CYTUS

训练所用的乐曲和谱面信息来自CYTUS。

从音乐到图像

为了利用CNN,将读入的一段乐曲信号按顺序转化为若干80×80的图片,并根据谱面文件的信息给每张图打tag。

分工训练

为了生成游戏谱面,一共训练了四个模型:

ExistModel:判断一张图是否有key。

PosModel:如果一张图中有key,判断这个key的横坐标。

TypeModel:如果一张图中有key,判断这个key的类型(由于CYTUS1代只有click、hold、chain三种类型的key,因此AITUS目前也只考虑了这三种类型)。

TimeModel:如果一张图中对应的key是hold,判断这个hold的持续的时间。

一些调整

生成的谱面谱面并不那么如意,因此在【NoteMake.py】中还对模型的输出结果做了调整(详情请见代码)。

Owner
GradiusTwinbee
GradiusTwinbee
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022