Question and answer retrieval in Turkish with BERT

Overview

trfaq

Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉

What is this?

At this repo, I'm releasing the training script and a full working inference example for my model mys/bert-base-turkish-cased-nli-mean-faq-mnr published on HuggingFace. Please note that the training code at finetune_tf.py is a simplified version of the original, which is intended for educational purposes and not optimized for anything. However, it contains an implementation of the Multiple Negatives Symmetric Ranking loss, and you can use it in your own work. Additionally, I cleaned and filtered the Turkish subset of the clips/mqa dataset, as it contains lots of mis-encoded texts. You can download this cleaned dataset here.

Model

This is a finetuned version of mys/bert-base-turkish-cased-nli-mean for FAQ retrieval, which is itself a finetuned version of dbmdz/bert-base-turkish-cased for NLI. It maps questions & answers to 768 dimensional vectors to be used for FAQ-style chatbots and answer retrieval in question-answering pipelines. It was trained on the Turkish subset of clips/mqa dataset after some cleaning/ filtering and with a Multiple Negatives Symmetric Ranking loss. Before finetuning, I added two special tokens to the tokenizer (i.e., for questions and for answers) and resized the model embeddings, so you need to prepend the relevant tokens to the sequences before feeding them into the model. Please have a look at my accompanying repo to see how it was finetuned and how it can be used in inference. The following code snippet is an excerpt from the inference at the repo.

Usage

see inference.py for a full working example.

" + q for q in questions] answers = ["" + a for a in answers] def answer_faq(model, tokenizer, questions, answers, return_similarities=False): q_len = len(questions) tokens = tokenizer(questions + answers, padding=True, return_tensors='tf') embs = model(**tokens)[0] attention_masks = tf.cast(tokens['attention_mask'], tf.float32) sample_length = tf.reduce_sum(attention_masks, axis=-1, keepdims=True) masked_embs = embs * tf.expand_dims(attention_masks, axis=-1) masked_embs = tf.reduce_sum(masked_embs, axis=1) / tf.cast(sample_length, tf.float32) a = tf.math.l2_normalize(masked_embs[:q_len, :], axis=1) b = tf.math.l2_normalize(masked_embs[q_len:, :], axis=1) similarities = tf.matmul(a, b, transpose_b=True) scores = tf.nn.softmax(similarities) results = list(zip(answers, scores.numpy().squeeze().tolist())) sorted_results = sorted(results, key=lambda x: x[1], reverse=True) sorted_results = [{"answer": answer.replace("", ""), "score": f"{score:.4f}"} for answer, score in sorted_results] return sorted_results for question in questions: results = answer_faq(model, tokenizer, [question], answers) print(question.replace("", "")) print(results) print("---------------------") ">
questions = [
    "Merhaba",
    "Nasılsın?",
    "Bireysel araç kiralama yapıyor musunuz?",
    "Kurumsal araç kiralama yapıyor musunuz?"
]

answers = [
    "Merhaba, size nasıl yardımcı olabilirim?",
    "İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?",
    "Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?",
    "Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?"
]


questions = ["" + q for q in questions]
answers = ["" + a for a in answers]


def answer_faq(model, tokenizer, questions, answers, return_similarities=False):
    q_len = len(questions)
    tokens = tokenizer(questions + answers, padding=True, return_tensors='tf')
    embs = model(**tokens)[0]

    attention_masks = tf.cast(tokens['attention_mask'], tf.float32)
    sample_length = tf.reduce_sum(attention_masks, axis=-1, keepdims=True)
    masked_embs = embs * tf.expand_dims(attention_masks, axis=-1)
    masked_embs = tf.reduce_sum(masked_embs, axis=1) / tf.cast(sample_length, tf.float32)
    a = tf.math.l2_normalize(masked_embs[:q_len, :], axis=1)
    b = tf.math.l2_normalize(masked_embs[q_len:, :], axis=1)

    similarities = tf.matmul(a, b, transpose_b=True)
        
    scores = tf.nn.softmax(similarities)
    results = list(zip(answers, scores.numpy().squeeze().tolist()))
    sorted_results = sorted(results, key=lambda x: x[1], reverse=True)
    sorted_results = [{"answer": answer.replace("", ""), "score": f"{score:.4f}"} for answer, score in sorted_results]
    return sorted_results


for question in questions:
    results = answer_faq(model, tokenizer, [question], answers)
    print(question.replace("", ""))
    print(results)
    print("---------------------")

And the output is:

Merhaba
[{'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.2931'}, {'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2751'}, {'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2200'}, {'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.2118'}]
---------------------
Nasılsın?
[{'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2808'}, {'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.2623'}, {'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2320'}, {'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.2249'}]
---------------------
Bireysel araç kiralama yapıyor musunuz?
[{'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2861'}, {'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.2768'}, {'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2215'}, {'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.2156'}]
---------------------
Kurumsal araç kiralama yapıyor musunuz?
[{'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.3060'}, {'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2929'}, {'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2066'}, {'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.1945'}]
---------------------
Owner
M. Yusuf Sarıgöz
AI research engineer and Google Developer Expert on Machine Learning. Open to new opportunities.
M. Yusuf Sarıgöz
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Linear Transformers Are Secretly Fast Weight Programmers This repository contains the code accompanying the paper Linear Transformers Are Secretly Fas

Imanol Schlag 77 Dec 19, 2022
Unsupervised intent recognition

INTENT author: steeve LAQUITAINE description: deployment pattern: currently batch only Setup & run git clone https://github.com/slq0/intent.git bash

sl 1 Apr 08, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022