The Submission for SIMMC 2.0 Challenge 2021

Related tags

Deep Learningsimmc2.0
Overview

The Submission for SIMMC 2.0 Challenge 2021

Requirements

Preprocessing

  1. Download Data
  • Download the data provided by the challenge organizer and put it in the data folder.
  • Unzip data files
  1. Image saving
  • Preprocess the image files in advance. The preprocessed result has the image name as the key and visual as the value.
python3 image_preprocessor.py
python3 image_preprocessor_final.py

Step 1 (ITM)

First, the model is post-trained by image-to-text matching. Here, image is each object and text is the visual metadata of the object. Code is provided in the ITM folder.

Step 2 (BTM)

Second, pretraining is performed to use background reprsentation of image in subtasks. Similar to ITM, it is trained to match image and text, and the image is the background of the dialog and the text is the entire context of the dialog. Code is provided in the BTM folder.

Step 3

This is the learning process for each subtask. You can train the model in each folder (sub1, sub2_1, sub2_2, sub2_3, sub2_4, sub4).

Model

All models can be downloaded from the following link

model.pt is a model for evaluating devtest, and the result is saved in the dstc10-simmc-entry folder. model_final.pt is a model for evaluating teststd, and the result is saved in the dstc10-simmc-final-entry folder. However, the training of the model was not completed within the challenge period, so we inferred to model.pt for the teststd data in subtask2.

Evlauation

Using the evaluation script suggested by the challenge organizer

The SIMMC organizers introduce the scripts:

(line-by-line evaluation) $ python -m gpt2_dst.scripts.evaluate \ --input_path_target={PATH_TO_GROUNDTRUTH_TARGET} \ --input_path_predicted={PATH_TO_MODEL_PREDICTIONS} \ --output_path_report={PATH_TO_REPORT} (Or, dialog level evaluation) $ python -m utils.evaluate_dst \ --input_path_target={PATH_TO_GROUNDTRUTH_TARGET} \ --input_path_predicted={PATH_TO_MODEL_PREDICTIONS} \ --output_path_report={PATH_TO_REPORT} $ python tools/response_evaluation.py \ --data_json_path={PATH_TO_GOLD_RESPONSES} \ --model_response_path={PATH_TO_MODEL_RESPONSES} \ --single_round_evaluation $ python tools/retrieval_evaluation.py \ --retrieval_json_path={PATH_TO_GROUNDTRUTH_RETRIEVAL} \ --model_score_path={PATH_TO_MODEL_CANDIDATE_SCORES} \ --single_round_evaluation ">

     
      
$ python tools/disambiguator_evaluation.py \
	--pred_file="{PATH_TO_PRED_FILE}" \
	--test_file="{PATH_TO_TEST_FILE}" \


      
       
(line-by-line evaluation)
$ python -m gpt2_dst.scripts.evaluate \
  --input_path_target={PATH_TO_GROUNDTRUTH_TARGET} \
  --input_path_predicted={PATH_TO_MODEL_PREDICTIONS} \
  --output_path_report={PATH_TO_REPORT}

(Or, dialog level evaluation)
$ python -m utils.evaluate_dst \
    --input_path_target={PATH_TO_GROUNDTRUTH_TARGET} \
    --input_path_predicted={PATH_TO_MODEL_PREDICTIONS} \
    --output_path_report={PATH_TO_REPORT}
    

       
        
$ python tools/response_evaluation.py \
    --data_json_path={PATH_TO_GOLD_RESPONSES} \
    --model_response_path={PATH_TO_MODEL_RESPONSES} \
    --single_round_evaluation


        
         
$ python tools/retrieval_evaluation.py \
    --retrieval_json_path={PATH_TO_GROUNDTRUTH_RETRIEVAL} \
    --model_score_path={PATH_TO_MODEL_CANDIDATE_SCORES} \
    --single_round_evaluation    

        
       
      
     

DevTest Results

Subtask #1: Multimodal Disambiguation

Test Method Accuracy
GPT2 from CO(Challenge Organizer) 73.9
Ours 92.28

Subtask #2: Multimodal Coreference Resolution

Test Method Object F1
GPT2 from CO 0.366
Ours-1 (sub2_1) 0.595
Ours-2 (sub2_2) 0.604
Ours-3 (sub2_3) 0.607
Ours-4 (sub2_4) 0.608

Subtask #3: Multimodal Dialog State Tracking

No Training/Testing

Subtask #4: Multimodal Dialog Response Generation

Generation

Baseline BLEU
GPT2 from CO 0.192
MTN-SIMMC2 from CO 0.217
Ours 0.285

Retrieval

No Training/Testing

Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022