The Submission for SIMMC 2.0 Challenge 2021

Related tags

Deep Learningsimmc2.0
Overview

The Submission for SIMMC 2.0 Challenge 2021

Requirements

Preprocessing

  1. Download Data
  • Download the data provided by the challenge organizer and put it in the data folder.
  • Unzip data files
  1. Image saving
  • Preprocess the image files in advance. The preprocessed result has the image name as the key and visual as the value.
python3 image_preprocessor.py
python3 image_preprocessor_final.py

Step 1 (ITM)

First, the model is post-trained by image-to-text matching. Here, image is each object and text is the visual metadata of the object. Code is provided in the ITM folder.

Step 2 (BTM)

Second, pretraining is performed to use background reprsentation of image in subtasks. Similar to ITM, it is trained to match image and text, and the image is the background of the dialog and the text is the entire context of the dialog. Code is provided in the BTM folder.

Step 3

This is the learning process for each subtask. You can train the model in each folder (sub1, sub2_1, sub2_2, sub2_3, sub2_4, sub4).

Model

All models can be downloaded from the following link

model.pt is a model for evaluating devtest, and the result is saved in the dstc10-simmc-entry folder. model_final.pt is a model for evaluating teststd, and the result is saved in the dstc10-simmc-final-entry folder. However, the training of the model was not completed within the challenge period, so we inferred to model.pt for the teststd data in subtask2.

Evlauation

Using the evaluation script suggested by the challenge organizer

The SIMMC organizers introduce the scripts:

(line-by-line evaluation) $ python -m gpt2_dst.scripts.evaluate \ --input_path_target={PATH_TO_GROUNDTRUTH_TARGET} \ --input_path_predicted={PATH_TO_MODEL_PREDICTIONS} \ --output_path_report={PATH_TO_REPORT} (Or, dialog level evaluation) $ python -m utils.evaluate_dst \ --input_path_target={PATH_TO_GROUNDTRUTH_TARGET} \ --input_path_predicted={PATH_TO_MODEL_PREDICTIONS} \ --output_path_report={PATH_TO_REPORT} $ python tools/response_evaluation.py \ --data_json_path={PATH_TO_GOLD_RESPONSES} \ --model_response_path={PATH_TO_MODEL_RESPONSES} \ --single_round_evaluation $ python tools/retrieval_evaluation.py \ --retrieval_json_path={PATH_TO_GROUNDTRUTH_RETRIEVAL} \ --model_score_path={PATH_TO_MODEL_CANDIDATE_SCORES} \ --single_round_evaluation ">

     
      
$ python tools/disambiguator_evaluation.py \
	--pred_file="{PATH_TO_PRED_FILE}" \
	--test_file="{PATH_TO_TEST_FILE}" \


      
       
(line-by-line evaluation)
$ python -m gpt2_dst.scripts.evaluate \
  --input_path_target={PATH_TO_GROUNDTRUTH_TARGET} \
  --input_path_predicted={PATH_TO_MODEL_PREDICTIONS} \
  --output_path_report={PATH_TO_REPORT}

(Or, dialog level evaluation)
$ python -m utils.evaluate_dst \
    --input_path_target={PATH_TO_GROUNDTRUTH_TARGET} \
    --input_path_predicted={PATH_TO_MODEL_PREDICTIONS} \
    --output_path_report={PATH_TO_REPORT}
    

       
        
$ python tools/response_evaluation.py \
    --data_json_path={PATH_TO_GOLD_RESPONSES} \
    --model_response_path={PATH_TO_MODEL_RESPONSES} \
    --single_round_evaluation


        
         
$ python tools/retrieval_evaluation.py \
    --retrieval_json_path={PATH_TO_GROUNDTRUTH_RETRIEVAL} \
    --model_score_path={PATH_TO_MODEL_CANDIDATE_SCORES} \
    --single_round_evaluation    

        
       
      
     

DevTest Results

Subtask #1: Multimodal Disambiguation

Test Method Accuracy
GPT2 from CO(Challenge Organizer) 73.9
Ours 92.28

Subtask #2: Multimodal Coreference Resolution

Test Method Object F1
GPT2 from CO 0.366
Ours-1 (sub2_1) 0.595
Ours-2 (sub2_2) 0.604
Ours-3 (sub2_3) 0.607
Ours-4 (sub2_4) 0.608

Subtask #3: Multimodal Dialog State Tracking

No Training/Testing

Subtask #4: Multimodal Dialog Response Generation

Generation

Baseline BLEU
GPT2 from CO 0.192
MTN-SIMMC2 from CO 0.217
Ours 0.285

Retrieval

No Training/Testing

S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023