Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Overview

Receptive Field Block Net for Accurate and Fast Object Detection

By Songtao Liu, Di Huang, Yunhong Wang

Updatas (2021/07/23): YOLOX is here!, stronger YOLO with ONNX, TensorRT, ncnn, and OpenVino supported!!

Updates: we propose a new method to get 42.4 mAP at 45 FPS on COCO, code is available here

Introduction

Inspired by the structure of Receptive Fields (RFs) in human visual systems, we propose a novel RF Block (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the discriminability and robustness of features. We further assemble the RFB module to the top of SSD with a lightweight CNN model, constructing the RFB Net detector. You can use the code to train/evaluate the RFB Net for object detection. For more details, please refer to our ECCV paper.

   

VOC2007 Test

System mAP FPS (Titan X Maxwell)
Faster R-CNN (VGG16) 73.2 7
YOLOv2 (Darknet-19) 78.6 40
R-FCN (ResNet-101) 80.5 9
SSD300* (VGG16) 77.2 46
SSD512* (VGG16) 79.8 19
RFBNet300 (VGG16) 80.7 83
RFBNet512 (VGG16) 82.2 38

COCO

System test-dev mAP Time (Titan X Maxwell)
Faster R-CNN++ (ResNet-101) 34.9 3.36s
YOLOv2 (Darknet-19) 21.6 25ms
SSD300* (VGG16) 25.1 22ms
SSD512* (VGG16) 28.8 53ms
RetinaNet500 (ResNet-101-FPN) 34.4 90ms
RFBNet300 (VGG16) 30.3 15ms
RFBNet512 (VGG16) 33.8 30ms
RFBNet512-E (VGG16) 34.4 33ms

MobileNet

System COCO minival mAP #parameters
SSD MobileNet 19.3 6.8M
RFB MobileNet 20.7 7.4M

Citing RFB Net

Please cite our paper in your publications if it helps your research:

@InProceedings{Liu_2018_ECCV,
author = {Liu, Songtao and Huang, Di and Wang, andYunhong},
title = {Receptive Field Block Net for Accurate and Fast Object Detection},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}

Contents

  1. Installation
  2. Datasets
  3. Training
  4. Evaluation
  5. Models

Installation

  • Install PyTorch-0.4.0 by selecting your environment on the website and running the appropriate command.
  • Clone this repository. This repository is mainly based on ssd.pytorch and Chainer-ssd, a huge thank to them.
    • Note: We currently only support PyTorch-0.4.0 and Python 3+.
  • Compile the nms and coco tools:
./make.sh

Note: Check you GPU architecture support in utils/build.py, line 131. Default is:

'nvcc': ['-arch=sm_52',
  • Then download the dataset by following the instructions below and install opencv.
conda install opencv

Note: For training, we currently support VOC and COCO.

Datasets

To make things easy, we provide simple VOC and COCO dataset loader that inherits torch.utils.data.Dataset making it fully compatible with the torchvision.datasets API.

VOC Dataset

Download VOC2007 trainval & test
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2007.sh # <directory>
Download VOC2012 trainval
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2012.sh # <directory>

COCO Dataset

Install the MS COCO dataset at /path/to/coco from official website, default is ~/data/COCO. Following the instructions to prepare minival2014 and valminusminival2014 annotations. All label files (.json) should be under the COCO/annotations/ folder. It should have this basic structure

$COCO/
$COCO/cache/
$COCO/annotations/
$COCO/images/
$COCO/images/test2015/
$COCO/images/train2014/
$COCO/images/val2014/

UPDATE: The current COCO dataset has released new train2017 and val2017 sets which are just new splits of the same image sets.

Training

mkdir weights
cd weights
wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
  • To train RFBNet using the train script simply specify the parameters listed in train_RFB.py as a flag or manually change them.
python train_RFB.py -d VOC -v RFB_vgg -s 300 
  • Note:
    • -d: choose datasets, VOC or COCO.
    • -v: choose backbone version, RFB_VGG, RFB_E_VGG or RFB_mobile.
    • -s: image size, 300 or 512.
    • You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see train_RFB.py for options)
    • If you want to reproduce the results in the paper, the VOC model should be trained about 240 epoches while the COCO version need 130 epoches.

Evaluation

To evaluate a trained network:

python test_RFB.py -d VOC -v RFB_vgg -s 300 --trained_model /path/to/model/weights

By default, it will directly output the mAP results on VOC2007 test or COCO minival2014. For VOC2012 test and COCO test-dev results, you can manually change the datasets in the test_RFB.py file, then save the detection results and submitted to the server.

Models

Owner
Liu Songtao
我萧峰大好男儿~ Factos👍👀​
Liu Songtao
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022