Simple and efficient RevNet-Library with DeepSpeed support

Related tags

Text Data & NLPrevlib
Overview

RevLib

Simple and efficient RevNet-Library with DeepSpeed support

Features

  • Half the constant memory usage and faster than RevNet libraries
  • Less memory than gradient checkpointing (1 * output_size instead of n_layers * output_size)
  • Same speed as activation checkpointing
  • Extensible
  • Trivial code (<100 Lines)

Getting started

Installation

python3 -m pip install revlib

Examples

iRevNet

iRevNet is not only partially reversible but instead a fully-invertible model. The source code looks complex at first glance. It also doesn't use the memory savings it could utilize, as RevNet requires custom AutoGrad functions that are hard to maintain. An iRevNet can be implemented like this using revlib:

import torch
from torch import nn
import revlib

channels = 64
channel_multiplier = 4
depth = 3
classes = 1000


# Create a basic function that's reversibly executed multiple times. (Like f() in ResNet)
def conv(in_channels, out_channels):
    return nn.Conv2d(in_channels, out_channels, (3, 3), padding=1)


def block_conv(in_channels, out_channels):
    return nn.Sequential(conv(in_channels, out_channels),
                         nn.Dropout(0.2),
                         nn.BatchNorm2d(out_channels),
                         nn.ReLU())


def block():
    return nn.Sequential(block_conv(channels, channels * channel_multiplier),
                         block_conv(channels * channel_multiplier, channels),
                         nn.Conv2d(channels, channels, (3, 3), padding=1))


# Create a reversible model. f() is invoked depth-times with different weights.
rev_model = revlib.ReversibleSequential(*[block() for _ in range(depth)])

# Wrap reversible model with non-reversible layers
model = nn.Sequential(conv(3, 2*channels), rev_model, conv(2 * channels, classes))

# Use it like you would a regular PyTorch model
inp = torch.randn((1, 3, 224, 224))
out = model(inp)
out.mean().backward()
assert out.size() == (1, 1000, 224, 224)

MomentumNet

MomentumNet is another recent paper that made significant advancements in the area of memory-efficient networks. They propose to use a momentum stream instead of a second model output as illustrated below: MomentumNetIllustration. Implementing that with revlib requires you to write a custom coupling operation (functional analogue to MemCNN) that merges input and output streams.

import torch
from torch import nn
import revlib

channels = 64
depth = 16
momentum_ema_beta = 0.99


# Compute y2 from x2 and f(x1) by merging x2 and f(x1) in the forward pass.
def momentum_coupling_forward(other_stream: torch.Tensor, fn_out: torch.Tensor) -> torch.Tensor:
    return other_stream * momentum_ema_beta + fn_out * (1 - momentum_ema_beta)


# Calculate x2 from y2 and f(x1) by manually computing the inverse of momentum_coupling_forward.
def momentum_coupling_inverse(output: torch.Tensor, fn_out: torch.Tensor) -> torch.Tensor:
    return (output - fn_out * (1 - momentum_ema_beta)) / momentum_ema_beta


# Pass in coupling functions which will be used instead of x2 + f(x1) and y2 - f(x1)
rev_model = revlib.ReversibleSequential(*[layer for _ in range(depth)
                                          for layer in [nn.Conv2d(channels, channels, (3, 3), padding=1),
                                                        nn.Identity()]],
                                        coupling_forward=[momentum_coupling_forward, revlib.additive_coupling_forward],
                                        coupling_inverse=[momentum_coupling_inverse, revlib.additive_coupling_inverse])

inp = torch.randn((16, channels * 2, 224, 224))
out = rev_model(inp)
assert out.size() == (16, channels * 2, 224, 224)

Reformer

Reformer uses RevNet with chunking and LSH-attention to efficiently train a transformer. Using revlib, standard implementations, such as lucidrains' Reformer, can be improved upon to use less memory. Below we're still using the basic building blocks from lucidrains' code to have a comparable model.

import torch
from torch import nn
from reformer_pytorch.reformer_pytorch import LSHSelfAttention, Chunk, FeedForward, AbsolutePositionalEmbedding
import revlib


class Reformer(torch.nn.Module):
    def __init__(self, sequence_length: int, features: int, depth: int, heads: int, bucket_size: int = 64,
                 lsh_hash_count: int = 8, ff_chunks: int = 16, input_classes: int = 256, output_classes: int = 256):
        super(Reformer, self).__init__()
        self.token_embd = nn.Embedding(input_classes, features * 2)
        self.pos_embd = AbsolutePositionalEmbedding(features * 2, sequence_length)

        self.core = revlib.ReversibleSequential(*[nn.Sequential(nn.LayerNorm(features), layer) for _ in range(depth)
                                                 for layer in
                                                 [LSHSelfAttention(features, heads, bucket_size, lsh_hash_count),
                                                  Chunk(ff_chunks, FeedForward(features, activation=nn.GELU), 
                                                        along_dim=-2)]],
                                                split_dim=-1)
        self.out_norm = nn.LayerNorm(features * 2)
        self.out_linear = nn.Linear(features * 2, output_classes)

    def forward(self, inp: torch.Tensor) -> torch.Tensor:
        return self.out_linear(self.out_norm(self.core(self.token_embd(inp) + self.pos_embd(inp))))


sequence = 1024
classes = 16
model = Reformer(sequence, 256, 6, 8, output_classes=classes)
out = model(torch.ones((16, sequence), dtype=torch.long))
assert out.size() == (16, sequence, classes)

Explanation

Most other RevNet libraries, such as MemCNN and Revtorch calculate both f() and g() in one go, to create one large computation. RevLib, on the other hand, brings Mesh TensorFlow's "reversible half residual and swap" to PyTorch. reversible_half_residual_and_swap computes only one of f() and g() and swaps the inputs and gradients. This way, the library only has to store one output as it can recover the other output during the backward pass.
Following Mesh TensorFlow's example, revlib also uses separate x1 and x2 tensors instead of concatenating and splitting at every step to reduce the cost of memory-bound operations.

RevNet's memory consumption doesn't scale with its depth, so it's significantly more memory-efficient for deep models. One problem in most implementations was that two tensors needed to be stored in the output, quadrupling the required memory. The high memory consumption rendered RevNet nearly useless for small networks, such as BERT, with its six layers.
RevLib works around this problem by storing only one output and two inputs for each forward pass, giving a model as small as BERT a >2x improvement!

Ignoring the dual-path structure of a RevNet, it usually used to be much slower than gradient checkpointing. However, RevLib uses minimal coupling functions and has no overhead between Sequence items, allowing it to train as fast as a comparable model with gradient checkpointing.

Owner
Lucas Nestler
German ai researcher
Lucas Nestler
1 Jun 28, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 03, 2023
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022