Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

Overview

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository

License: MIT GitHub issues GitHub forks GitHub stars PRs Welcome Github commits

Header

Table of Contents

  1. Introduction
  2. About Page of the repository
  3. Navigating the portal can be challenging and time consuming
  4. Introducing UCIML Python code base
  5. Required packages/Dependencies
  6. How to run it
  7. Features and functions currently supported
  8. Example (search and download a particular dataset)
  9. Example (search for datasets with a particular keyword)
  10. If want to bypass the simple API and play with the low-level functions

Introduction

UCI machine learning dataset repository is something of a legend in the field of machine learning pedagogy. It is a 'go-to-shop' for beginners and advanced learners alike. This codebase is an attempt to present a simple and intuitive API for UCI ML portal, using which users can easily look up a dataset description, search for a particular dataset they are interested, and even download datasets categorized by size or machine learning task.

About Page of the repository

The UCI Machine Learning Repository is a collection of databases, domain theories, and data generators that are used by the machine learning community for the empirical analysis of machine learning algorithms. The archive was created as an ftp archive in 1987 by David Aha and fellow graduate students at UC Irvine. Since that time, it has been widely used by students, educators, and researchers all over the world as a primary source of machine learning data sets. As an indication of the impact of the archive, it has been cited over 1000 times, making it one of the top 100 most cited "papers" in all of computer science. The current version of the web site was designed in 2007 by Arthur Asuncion and David Newman, and this project is in collaboration with Rexa.info at the University of Massachusetts Amherst. Funding support from the National Science Foundation is gratefully acknowledged.

UCI ML Logo

But navigating the portal can be challenging and time consuming...

UCI ML portal is a wonderful gift to ML practioners. That said, navigating the portal can be bit frustrating and time consuming as there is no simple intuitive API or download link for the dataset you are interested in. You have to hop around multiple pages to go to the raw dataset page that you are looking for. Also, if you are interested in particular type of ML task (regression or classification for example) and want to download all datasets corresponding to that task, there is no simple command to accomplish such.

Introducing UCIML Python code base

This is a MIT-licensed Open-source Python 3.6 codebase which offers functions and methods to allow an user play with the UCI ML datasets in an interactive manner. Download/clone/fork the codebase from my Github page here.

Required packages/Dependencies

Only three widely used Python packages are required to run this code. For easy installation of these supporting packages, setup.bash and setup.bat files are included in my repo. Just execute them in your Linux/Windows shell and you are ready!

How to run it?

Make sure you are connected to Internet:-) Then, just download/clone the Gitgub repo, make sure to have the supporting packages installed.

git clone https://github.com/tirthajyoti/UCI-ML-API.git {your_local_directory}

Then go to the your_local_directory where you have cloned the Git and run the following command at your terminal.

python Main.py

A menu will open up allowing you to perform various tasks. Here is a screenshot of the menu,

Menu

Features and functions currently supported

Following features are currently implemented...

  • Building a local database of name, description, and URL of datasets by crawling the entire portal
  • Building a local database of name, size, machine learning task of datasets by crawling the entire portal
  • Search and download a particular dataset
  • Download first few datasets
  • Print names of all datasets
  • Print short descriptions of all datasets
  • Search for one-liner description and webpage link (for more info) of a dataset
  • Download datasets based on their size
  • Download datasets based on the machine learning task associated with them

Example (search and download a particular dataset)

For example if you want to download the famous dataset Iris, just choose the option 3 from the menu, enter the name of the local database stored (to make the search faster) and voila! You will have the Iris dataset downloaded and stored in a folder called 'Iris' in your directory!

Iris download example

Example (search for datasets with a particular keyword)

If you search using a keyword by choosing option 7, then you will get back short one-liner abstracts about all the datasets whose name match your search string (even partially). You will also get the associated web page link for each of these results, so that you can go and explore them more if you want. Below screenshot shows an example of searching with the term Cancer.

Search example with a keyword

If want to bypass the simple API and play with the low-level functions

In case you want to bypass the simple user API and play with the low-level functions, you are welcome to do so. Here is the rundown on them. First, import the necessary packages,

from UCI_ML_Functions import *
import pandas as pd

read_dataset_table(): Reads the table of datasets from the url: "https://archive.ics.uci.edu/ml/datasets.html" and process it further to clean and categorize.

clean_dataset_table(): Accepts the raw dataset table (a DataFrame object) and returns a cleaned up version removing entries with unknown number of samples and attributes. Also rationalizes the 'Default task' category column indicating the main machine learning task associated with the datasets.

build_local_table(filename=None,msg_flag=True): Reads through the UCI ML portal and builds a local table with information such as name, size, ML task, data type.

  • filename: Optional filename that can be chosen by the user. If not chosen, a default name ('UCI table.csv') will be selected by the program.
  • msg_flag: Controls verbosity.

build_dataset_list(): Scrapes through the UCI ML datasets page and builds a list of all datasets.

build_dataset_dictionary(): Scrapes through the UCI ML datasets page and builds a dictionary of all datasets with names and description. Also stores the unique identifier corresponding to the dataset. This identifier string is needed by the downloader function to download the data file. Generic name won't work.

build_full_dataframe(): Builds a DataFrame with all information together including the url link for downloading the data.

build_local_database(filename=None,msg_flag=True): Reads through the UCI ML portal and builds a local database with information such as: name, abstract, data page URL.

  • filename: Optional filename that can be chosen by the user. If not chosen, a default name ('UCI database.csv') will be selected by the program.
  • msg_flag: Controls verbosity.

return_abstract(name,local_database=None,msg_flag=False): Returns one-liner description (and webpage link for further information) of a particular dataset by searching the given name.

  • local_database: Name of the database (CSV file) stored locally i.e. in the same directory, which contains information about all the datasets on UCI ML repo.
  • msg_flag: Controls verbosity.

describe_all_dataset(msg_flag=False): Calls the build_dataset_dictionary function and prints description of all datasets from that.

print_all_datasets_names(msg_flag=False): Calls the build_dataset_dictionary function and prints names of all datasets from that.

extract_url_dataset(dataset,msg_flag=False): Given a dataset identifier this function extracts the URL for the page where the actual raw data resides.

download_dataset_url(url,directory,msg_flag=False,download_flag=True): Download all the files from the links in the given url.

  • msg_flag: Controls verbosity.
  • download_flag: Default is True. If set to False, only creates the directories but does not initiate download (for testing purpose).

download_datasets(num=10,local_database=None,msg_flag=True,download_flag=True): Downloads datasets and puts them in a local directory named after the dataset. By default downloads first 10 datasets only. User can choose the number of dataets to be downloaded.

  • msg_flag: Controls verbosity.
  • download_flag: Default is True. If set to False, only creates the directories but does not initiate download (for testing purpose).

download_dataset_name(name,local_database=None,msg_flag=True,download_flag=True): Downloads a particular dataset by searching the given name.

  • local_database: Name of the database (CSV file) stored locally i.e. in the same directory, which contains information about all the datasets on UCI ML repo.
  • msg_flag: Controls verbosity.
  • download_flag: Default is True. If set to False, only creates the directories but does not initiate download (for testing purpose).

download_datasets_size(size='Small',local_database=None,local_table=None,msg_flag=False,download_flag=True): Downloads all datasets which satisfy the 'size' criteria.

  • size: Size of the dataset which user wants to download. Could be any of the following: 'Small', 'Medium', 'Large','Extra Large'.
  • local_database: Name of the database (CSV file) stored locally i.e. in the same directory, which contains name and URL information about all the datasets on UCI ML repo.
  • local_table: Name of the database (CSV file) stored locally i.e. in the same directory, which contains features information about all the datasets on UCI ML repo i.e. number of samples, type of machine learning task to be performed with the dataset.
  • msg_flag: Controls verbosity.
  • download_flag: Default is True. If set to False, only creates the directories but does not initiate download (for testing purpose).

download_datasets_task(task='Classification',local_database=None,local_table=None,msg_flag=False,download_flag=True): Downloads all datasets which match the ML task criteria as eneterd by the user.

  • task: Machine learning task for which user wants to download the datasets. Could be any of the following:

'Classification', 'Recommender Systems', 'Regression', 'Other/Unknown', 'Clustering', 'Causal Discovery'.

  • local_database: Name of the database (CSV file) stored locally i.e. in the same directory, which contains name and URL information about all the datasets on UCI ML repo.
  • local_table: Name of the database (CSV file) stored locally i.e. in the same directory, which contains features information about all the datasets on UCI ML repo i.e. number of samples, type of machine learning task to be performed with the dataset.
  • msg_flag: Controls verbosity.
  • download_flag: Default is True. If set to False, only creates the directories but does not initiate download (for testing purpose).

So, give it a try and put a star to my Github repo if you like it.

Feedbacks and suggestions for improvements are most welcome at [email protected]

Owner
Tirthajyoti Sarkar
Data Sc/Engineering manager , Industry 4.0, edge-computing, semiconductor technologist, Author, Python pkgs - pydbgen, MLR, and doepy,
Tirthajyoti Sarkar
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022