CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Overview

Advanced Topics in Optimization for Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization for Machine Learning

Video Lectures

Video Lectures are on this youtube playlist: https://www.youtube.com/playlist?list=PLGod0_zT9w92_evaYrf3-rE67AmgPJoUU

Github Link to all Demos

https://github.com/rishabhk108/OptimizationDemos

Link to Google Spreadsheet for Paper Review and Project Topics

https://docs.google.com/spreadsheets/d/1UHHFlo_8QAvmXjWqoU02Calq86S-ewYl7Jczjhgr0wY/edit?usp=sharing

Deadline for finalizing on the papers to cover: February 26th

Deadine for finalizing on the project topic: March 5th

Topics Covered in this Course

  • Week 1
    • Logistics, Outline of this Course
    • Continuous Optimization in ML
    • Convex Sets and Basics of Convexity
  • Week 2: Gradient Descent and Family
    • Convex Functions, Properties, Minima, Subgradients
    • Gradient Descent and Line Search
  • Week 3: Gradient Descent Cont.
    • Accelerated Gradient Descent
    • Projected and Proximal Gradient Descent
  • Week 4
    • Projected GD and Conditional GD (Constrained Case)
    • Second Order Methods (Newton, Quasi-Newton, BFGS, LBFGS)
  • Week 5
    • Second Order Methods Completed
    • Barzelia Borwein and Conjugate GD
    • Coordinate Descent Family
  • Week 6
    • Stochastic Gradient and Family (SGD, SVRG)
    • SGD for Non-Convex Optimization. Modern variants of SGD particularly for deep learning (e.g. Adagrad, Adam, AdaDelta, RMSProp, Momentum etc.)
  • Week 7
    • Submodular Optimization: Basics, Definitions, Properties, and Examples.
  • Week 8
    • Submodular Information Measures: Conditional Gain, Submodular Mutual Information, Submodular Span, Submodular Multi-Set Mutual Information
  • Week 9
    • Submodular Minimization and Continuous Extensions of Submodular Functions. Submodular Minimization under constraints
  • Week 10
    • Submodular Maximization Variants, Submodular Set Cover, Approximate submodularity. Algorithms under different constraints and monotone/non-monotone settings. Also, distributed and streaming algorithms, DS Optimization, Submodular Optimization under Submodular Constraints
  • Week 11
    • Applications of Discrete Optimization: Data Subset Selection, Data Summarization, Feature Selection, Active Learning etc.
  • Rest of the Weeks
    • Paper Presentations/Project Presentations by the Students

Grading

  • 10% for Class Participation (Interaction, asking questions, answering questions)
  • 30% Assignments (2 Assignments, one on continuous optimization and one on discrete optimization)
  • 30% Paper Presentations (1-2 papers per student)
  • 30% for the Final Project
    • Take a new dataset/problem and study how existing optimization algorithms work on them
    • Take an existing problem and compare all optimization algorithms with your implementation from scratch
    • Design a ML optimization toolkit with algorithms implemented from scratch -- if one of you would like to extend my current python demos for optimization, that will be an awesome contribution and I might pick it up for my future classes and acknowledge you :)

Other Similar Courses

Resources/Books/Papers

Owner
Rishabh Iyer
Currently Assistant Prof. at CSE @ UTD. 10+ years experience in Deep Learning, AI and ML. Ph.D. and PostDoc from UW and previously ML Researcher at Microsoft.
Rishabh Iyer
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery

A powerful and flexible machine learning platform for drug discovery

MilaGraph 1.1k Jan 08, 2023
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022