CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Overview

Advanced Topics in Optimization for Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization for Machine Learning

Video Lectures

Video Lectures are on this youtube playlist: https://www.youtube.com/playlist?list=PLGod0_zT9w92_evaYrf3-rE67AmgPJoUU

Github Link to all Demos

https://github.com/rishabhk108/OptimizationDemos

Link to Google Spreadsheet for Paper Review and Project Topics

https://docs.google.com/spreadsheets/d/1UHHFlo_8QAvmXjWqoU02Calq86S-ewYl7Jczjhgr0wY/edit?usp=sharing

Deadline for finalizing on the papers to cover: February 26th

Deadine for finalizing on the project topic: March 5th

Topics Covered in this Course

  • Week 1
    • Logistics, Outline of this Course
    • Continuous Optimization in ML
    • Convex Sets and Basics of Convexity
  • Week 2: Gradient Descent and Family
    • Convex Functions, Properties, Minima, Subgradients
    • Gradient Descent and Line Search
  • Week 3: Gradient Descent Cont.
    • Accelerated Gradient Descent
    • Projected and Proximal Gradient Descent
  • Week 4
    • Projected GD and Conditional GD (Constrained Case)
    • Second Order Methods (Newton, Quasi-Newton, BFGS, LBFGS)
  • Week 5
    • Second Order Methods Completed
    • Barzelia Borwein and Conjugate GD
    • Coordinate Descent Family
  • Week 6
    • Stochastic Gradient and Family (SGD, SVRG)
    • SGD for Non-Convex Optimization. Modern variants of SGD particularly for deep learning (e.g. Adagrad, Adam, AdaDelta, RMSProp, Momentum etc.)
  • Week 7
    • Submodular Optimization: Basics, Definitions, Properties, and Examples.
  • Week 8
    • Submodular Information Measures: Conditional Gain, Submodular Mutual Information, Submodular Span, Submodular Multi-Set Mutual Information
  • Week 9
    • Submodular Minimization and Continuous Extensions of Submodular Functions. Submodular Minimization under constraints
  • Week 10
    • Submodular Maximization Variants, Submodular Set Cover, Approximate submodularity. Algorithms under different constraints and monotone/non-monotone settings. Also, distributed and streaming algorithms, DS Optimization, Submodular Optimization under Submodular Constraints
  • Week 11
    • Applications of Discrete Optimization: Data Subset Selection, Data Summarization, Feature Selection, Active Learning etc.
  • Rest of the Weeks
    • Paper Presentations/Project Presentations by the Students

Grading

  • 10% for Class Participation (Interaction, asking questions, answering questions)
  • 30% Assignments (2 Assignments, one on continuous optimization and one on discrete optimization)
  • 30% Paper Presentations (1-2 papers per student)
  • 30% for the Final Project
    • Take a new dataset/problem and study how existing optimization algorithms work on them
    • Take an existing problem and compare all optimization algorithms with your implementation from scratch
    • Design a ML optimization toolkit with algorithms implemented from scratch -- if one of you would like to extend my current python demos for optimization, that will be an awesome contribution and I might pick it up for my future classes and acknowledge you :)

Other Similar Courses

Resources/Books/Papers

Owner
Rishabh Iyer
Currently Assistant Prof. at CSE @ UTD. 10+ years experience in Deep Learning, AI and ML. Ph.D. and PostDoc from UW and previously ML Researcher at Microsoft.
Rishabh Iyer
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit

Soledad Galli 33 Dec 27, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
SPCL 48 Dec 12, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023