Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Overview

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Language model training

Fine-tuning (or training from scratch) the library models for language modeling on a text dataset for GPT, GPT-2, ALBERT, BERT, DistilBERT, RoBERTa, XLNet... GPT and GPT-2 are trained or fine-tuned using a causal language modeling (CLM) loss while ALBERT, BERT, DistilBERT and RoBERTa are trained or fine-tuned using a masked language modeling (MLM) loss. XLNet uses permutation language modeling (PLM), you can find more information about the differences between those objectives in our model summary.

There are two sets of scripts provided. The first set leverages the Trainer API. The second set with no_trainer in the suffix uses a custom training loop and leverages the 🤗 Accelerate library . Both sets use the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.

Note: The old script run_language_modeling.py is still available here.

The following examples, will run on datasets hosted on our hub or with your own text files for training and validation. We give examples of both below.

GPT-2/GPT and causal language modeling

The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2 (no tokens were replaced before the tokenization). The loss here is that of causal language modeling.

python run_clm.py \
    --model_name_or_path gpt2 \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --do_train \
    --do_eval \
    --output_dir /tmp/test-clm

This takes about half an hour to train on a single K80 GPU and about one minute for the evaluation to run. It reaches a score of ~20 perplexity once fine-tuned on the dataset.

To run on your own training and validation files, use the following command:

python run_clm.py \
    --model_name_or_path gpt2 \
    --train_file path_to_train_file \
    --validation_file path_to_validation_file \
    --do_train \
    --do_eval \
    --output_dir /tmp/test-clm

This uses the built in HuggingFace Trainer for training. If you want to use a custom training loop, you can utilize or adapt the run_clm_no_trainer.py script. Take a look at the script for a list of supported arguments. An example is shown below:

python run_clm_no_trainer.py \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --model_name_or_path gpt2 \
    --output_dir /tmp/test-clm

RoBERTa/BERT/DistilBERT and masked language modeling

The following example fine-tunes RoBERTa on WikiText-2. Here too, we're using the raw WikiText-2. The loss is different as BERT/RoBERTa have a bidirectional mechanism; we're therefore using the same loss that was used during their pre-training: masked language modeling.

In accordance to the RoBERTa paper, we use dynamic masking rather than static masking. The model may, therefore, converge slightly slower (over-fitting takes more epochs).

python run_mlm.py \
    --model_name_or_path roberta-base \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --do_train \
    --do_eval \
    --output_dir /tmp/test-mlm

To run on your own training and validation files, use the following command:

python run_mlm.py \
    --model_name_or_path roberta-base \
    --train_file path_to_train_file \
    --validation_file path_to_validation_file \
    --do_train \
    --do_eval \
    --output_dir /tmp/test-mlm

If your dataset is organized with one sample per line, you can use the --line_by_line flag (otherwise the script concatenates all texts and then splits them in blocks of the same length).

This uses the built in HuggingFace Trainer for training. If you want to use a custom training loop, you can utilize or adapt the run_mlm_no_trainer.py script. Take a look at the script for a list of supported arguments. An example is shown below:

python run_mlm_no_trainer.py \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --model_name_or_path roberta-base \
    --output_dir /tmp/test-mlm

Note: On TPU, you should use the flag --pad_to_max_length in conjunction with the --line_by_line flag to make sure all your batches have the same length.

Whole word masking

This part was moved to examples/research_projects/mlm_wwm.

XLNet and permutation language modeling

XLNet uses a different training objective, which is permutation language modeling. It is an autoregressive method to learn bidirectional contexts by maximizing the expected likelihood over all permutations of the input sequence factorization order.

We use the --plm_probability flag to define the ratio of length of a span of masked tokens to surrounding context length for permutation language modeling.

The --max_span_length flag may also be used to limit the length of a span of masked tokens used for permutation language modeling.

Here is how to fine-tune XLNet on wikitext-2:

python run_plm.py \
    --model_name_or_path=xlnet-base-cased \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --do_train \
    --do_eval \
    --output_dir /tmp/test-plm

To fine-tune it on your own training and validation file, run:

python run_plm.py \
    --model_name_or_path=xlnet-base-cased \
    --train_file path_to_train_file \
    --validation_file path_to_validation_file \
    --do_train \
    --do_eval \
    --output_dir /tmp/test-plm

If your dataset is organized with one sample per line, you can use the --line_by_line flag (otherwise the script concatenates all texts and then splits them in blocks of the same length).

Note: On TPU, you should use the flag --pad_to_max_length in conjunction with the --line_by_line flag to make sure all your batches have the same length.

Owner
Junbum Lee
AI/NLP Researcher who loves python, web, and data. And who believes technology would make the world a better place.
Junbum Lee
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Dec 26, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Glow-Speak glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end. Installation git clone https://g

Rhasspy 8 Dec 25, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022