Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Overview

Seq2Seq Speech in JAX

A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text decoder model (e.g. GPT2, Bart) to yield a Speech Sequence-to-Sequence (Seq2Seq) model for automatic speech recognition.

The script run_flax_speech_recognition_seq2seq.py can be used to fine-tune a Speech Seq2Seq model on one of the official speech recognition datasets or a custom dataset. It makes use of the pmap JAX operator to provide model parallelism accross GPU/TPU devices.

The modelling files are based very heavily on those from Hugging Face Transformers 🤗 . This is a standalone repository to enable rapid prototyping and involvement with the community. The final modelling files and training script will be merged into Transformers 🤗 to be used with the rest of the open-source library. The final system weights will be made publicly available at huggingface.co 🚀

Seq2SeqModel Figure 1: Speech-encoder text-decoder style Seq2Seq model.

Example Usage

To instantiate a Wav2Vec2-2-Bart model with the FlaxSpeechEncoderDecoderModel framework, run the following Python script inside the cloned repo:

from transformers import AutoFeatureExtractor, AutoTokenizer
from models.modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
import numpy as np

# checkpoints to leverage
encoder_id = "facebook/wav2vec2-large-lv60"
decoder_id = "facebook/bart-large"

model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
    encoder_id, decoder_id, encoder_add_adapter=True, decoder_from_pt=True)

model.config.decoder_start_token_id = model.config.decoder.bos_token_id
model.config.pad_token_id = model.config.decoder.pad_token_id
model.config.eos_token_id = model.config.decoder.eos_token_id
model.config.use_cache = False
model.config.processor_class = "Wav2Vec2Processor"

# check if generation works
out = model.generate(np.ones((1, 2000)))

model.save_pretrained("./")

feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id)
feature_extractor.save_pretrained("./")
tokenizer = AutoTokenizer.from_pretrained(decoder_id)
tokenizer.save_pretrained("./")

To train the model on Librispeech ASR in default precision, run the bash script provided below:

#!/usr/bin/env bash
python run_flax_speech_recognition_seq2seq.py \
        --dataset_name="librispeech_asr" \
        --model_name_or_path="./" \
        --dataset_config_name="clean" \
        --train_split_name="train.100" \
        --eval_split_name="validation" \
        --output_dir="./" \
        --preprocessing_num_workers="16" \
        --length_column_name="input_length" \
        --overwrite_output_dir \
        --num_train_epochs="5" \
        --per_device_train_batch_size="2" \
        --per_device_eval_batch_size="2" \
        --gradient_accumulation_steps="1" \
        --logging_steps="25" \
        --max_duration_in_seconds="15" \
        --max_target_length="128" \
        --generation_max_length="40" \
        --generation_num_beams="1" \
        --learning_rate="1e-4" \
        --warmup_steps="500" \
        --text_column_name="text" \
        --save_total_limit="1" \
        --freeze_feature_encoder \
        --predict_with_generate \
        --do_lower_case \
        --do_eval \
        --do_train
Owner
Sanchit Gandhi
Open-Source Speech @huggingface
Sanchit Gandhi
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 03, 2023
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
Stanford CoreNLP provides a set of natural language analysis tools written in Java

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis tools written in Java. It can take raw human language text input and giv

Stanford NLP 8.8k Jan 07, 2023