MEDS: Enhancing Memory Error Detection for Large-Scale Applications

Related tags

Deep LearningMEDS
Overview

MEDS: Enhancing Memory Error Detection for Large-Scale Applications

Prerequisites

  • cmake and clang

Build MEDS supporting compiler

$ make

Build Using Docker

# build docker image
$ docker build -t meds .

# run docker image
$ docker run --cap-add=SYS_PTRACE -it meds /bin/bash

Testing MEDS

  • MEDS's testing runs original ASAN's testcases as well as MEDS specific testcases.

    • Copied ASAN's testcases in llvm/projects/compiler-rt/test/meds/TestCases/ASan
    • MEDS specific testcases in llvm/projects/compiler-rt/test/meds/TestCases/Meds
  • To run the test,

$ make test

Testing Time: 30.70s
 Expected Passes    : 183
 Expected Failures  : 1
 Unsupported Tests  : 50

Build applications with MEDS heap allocation and ASan stack and global

  • Given a test program test.cc,
$ cat > test.cc

int main(int argc, char **argv) {
  int *a = new int[10];
  a[argc * 10] = 1;
  return 0;
}
  • test.cc can be built using the option, -fsanitize=meds.
$ build/bin/clang++ -fsanitize=meds test.cc -o test
$ ./test

==90589==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x43fff67eb078 at pc 0x0000004f926d bp 0x7fffffffe440 sp 0x7fffffffe438
WRITE of size 4 at 0x43fff67eb078 thread T0
    #0 0x4f926c in main (/home/wookhyun/release/meds-release/a.out+0x4f926c)
    #1 0x7ffff6b5c82f in __libc_start_main /build/glibc-bfm8X4/glibc-2.23/csu/../csu/libc-start.c:291
    #2 0x419cb8 in _start (/home/wookhyun/release/meds-release/a.out+0x419cb8)

Address 0x43fff67eb078 is a wild pointer.
SUMMARY: AddressSanitizer: heap-buffer-overflow (/home/wookhyun/release/meds-release/a.out+0x4f926c) in main
Shadow bytes around the buggy address:
  0x08807ecf55b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x08807ecf55c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x08807ecf55d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x08807ecf55e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x08807ecf55f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x08807ecf5600: fa fa fa fa fa fa fa fa fa fa 00 00 00 00 00[fa]
  0x08807ecf5610: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x08807ecf5620: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x08807ecf5630: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x08807ecf5640: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x08807ecf5650: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
Shadow byte legend (one shadow byte represents 8 application bytes):
  Addressable:           00
  Partially addressable: 01 02 03 04 05 06 07
  Heap left redzone:       fa
  Freed heap region:       fd
  Stack left redzone:      f1
  Stack mid redzone:       f2
  Stack right redzone:     f3
  Stack after return:      f5
  Stack use after scope:   f8
  Global redzone:          f9
  Global init order:       f6
  Poisoned by user:        f7
  Container overflow:      fc
  Array cookie:            ac
  Intra object redzone:    bb
  ASan internal:           fe
  Left alloca redzone:     ca
  Right alloca redzone:    cb
==90589==ABORTING

Options

  • -fsanitize=meds: Enable heap protection using MEDS (stack and global are protected using ASAN)

  • -mllvm -meds-stack=1: Enable stack protection using MEDS

  • -mllvm -meds-global=1 -mcmodel=large: Enable global protection using MEDS

    • This also requires --emit-relocs in LDFLAGS
  • Example: to protect heap/stack using MEDS and global using ASAN

$ clang -fsanitize=meds -mllvm -meds-stack=1 test.c -o test
  • Example: to protect heap/global using MEDS and stack using ASAN
$ clang -fsanitize=meds -mllvm -meds-global=1 -mcmodel=large -Wl,-emit-relocs test.c -o test
  • Example: to protect heap/stack/global using MEDS
$ clang -fsanitize=meds -mllvm -meds-stack=1 -mllvm -meds-global=1 -mcmodel=large -Wl,--emit-relocs

Contributors

Owner
Secomp Lab at Purdue University
Secomp Lab at Purdue University
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022