Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

Overview

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation (Salesforce Research)

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on MSCOCO and Flickr30k, and visual grounding on RefCOCO+. Pre-trained and finetuned checkpoints are released.

Requirements:

  • pytorch 1.8.0
  • transformers 4.8.1
  • timm 0.4.9

Download:

Visualization:

We provide code in visualize.ipynb to visualize the important areas in an image for each word in a text. Here is an example visualization using the visual grounding checkpoint.

Pre-training on custom datasets:

  1. Prepare training json files where each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'image': path_of_image, 'caption': text_of_image}.
  2. In configs/Pretrain.yaml, set the paths for the json files.
  3. Pre-train the model using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Pretrain.py --config ./configs/Pretrain.yaml --output_dir output/Pretrain 

Image-Text Retrieval:

  1. Download MSCOCO or Flickr30k datasets from the original websites.
  2. Download and extract the provided dataset json files.
  3. In configs/Retrieval_coco.yaml or configs/Retrieval_flickr.yaml, set the paths for the json files and the image path.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Retrieval.py \
--config ./configs/Retrieval_flickr.yaml \
--output_dir output/Retrieval_flickr \
--checkpoint [Pretrained checkpoint]

VQA:

  1. Download VQA v2 dataset and Visual Genome dataset from the original websites.
  2. Download and extract the provided dataset json files.
  3. In configs/VQA.yaml, set the paths for the json files and the image paths.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env VQA.py \
--config ./configs/VQA.yaml \
--output_dir output/vqa \
--checkpoint [Pretrained checkpoint]
  1. Evaluate the result using the official evaluation server.

Visual Entailment:

  1. Download SNLI-VE dataset from the original website.
  2. Download and extract the provided dataset json files.
  3. In configs/VE.yaml, set the paths for the json files and the image path.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env VE.py \
--config ./configs/VE.yaml \
--output_dir output/VE \
--checkpoint [Pretrained checkpoint]

Visual Grounding on RefCOCO+:

  1. Download MSCOCO dataset from the original website.
  2. Download and extract the provided dataset json files.
  3. In configs/Grounding.yaml, set the paths for the json files and the image path.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Grounding.py \
--config ./configs/Grounding.yaml \
--output_dir output/RefCOCO \
--gradcam_mode itm \ 
--block_num 8 \
--checkpoint [Pretrained checkpoint]

NLVR2:

NLVR2 requires an additional pre-training step with text-assignment (TA) to adapt the model for image-pair inputs. In order to perform TA, first set the paths for the json training files in configs/NLVR_pretrain.yaml, then run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env Pretrain_nlvr.py \
--config ./configs/NLVR_pretrain.yaml \
--output_dir output/NLVR_pretrain \
--checkpoint [Pretrained checkpoint]

We provide the checkpoint after TA pre-training, which can be fine-tuned with the following steps.

  1. Download NLVR2 dataset from the original website.
  2. Download and extract the provided dataset json files.
  3. In configs/NLVR.yaml, set the paths for the json files and the image path.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env NLVR.py \
--config ./configs/NLVR.yaml \
--output_dir output/NLVR \
--checkpoint [TA pretrained checkpoint]

Citation

If you find this code to be useful for your research, please consider citing.

@article{ALBEF,
      title={Align before Fuse: Vision and Language Representation Learning with Momentum Distillation}, 
      author={Junnan Li and Ramprasaath R. Selvaraju and Akhilesh Deepak Gotmare and Shafiq Joty and Caiming Xiong and Steven Hoi},
      year={2021},
      journal={arXiv preprint arXiv:2107.07651},
}
Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023