FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

Related tags

Deep LearningFirmAFL
Overview

FIRM-AFL

FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it addresses compatibility issues by enabling fuzzing for POSIX-compatible firmware that can be emulated in a system emulator. Second, it addresses the performance bottleneck caused by system-mode emulation with a novel technique called "augmented process emulation". By combining system-mode emulation and user-mode emulation in a novel way, augmented process emulation provides high compatibility as system-mode emulation and high throughput as user-mode emulation.

Publication

Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, Limin Sun, “FIRM-AFL: High-throughput greybox fuzzing of IoT firmware via augmented process emulation,” in USENIX Security Symposium, 2019.

Introduction

FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it addresses compatibility issues by enabling fuzzing for POSIX-compatible firmware that can be emulated in a system emulator. Second, it addresses the performance bottleneck caused by system-mode emulation with a novel technique called "augmented process emulation". By combining system-mode emulation and user-mode emulation in a novel way, augmented process emulation provides high compatibility as system-mode emulation and high throughput as user-mode emulation. The overview is show in Figure 1.

Figure 1. Overview of Augmented Process Emulation

 

We design and implement FIRM-AFL, an enhancement of AFL for fuzzing IoT firmware. We keep the workflow of AFL intact and replace the user-mode QEMU with augmented process emulation, and the rest of the components remain unchanged. The new workflow is illustrated in Figure 2.

Figure 2. Overview of FIRM-AFL

Setup

Our system has two parts: system mode and user mode. We compile them separately for now.

User mode

cd user_mode/
./configure --target-list=mipsel-linux-user,mips-linux-user,arm-linux-user --static --disable-werror
make

System mode

cd qemu_mode/DECAF_qemu_2.10/
./configure --target-list=mipsel-softmmu,mips-softmmu,arm-softmmu --disable-werror
make

Usage

  1. Download the Firmdyne repo to the root directory of FirmAFL, then setup the firmadyne according to its instructions including importing its datasheet https://cmu.app.boxcn.net/s/hnpvf1n72uccnhyfe307rc2nb9rfxmjp into database.

  2. Replace the scripts/makeImage.sh with modified one in firmadyne_modify directory.

  3. follow the guidance from firmadyne to generate the system running scripts.

Take DIR-815 router firmware as a example,

cd firmadyne
./sources/extractor/extractor.py -b dlink -sql 127.0.0.1 -np -nk "../firmware/DIR-815_FIRMWARE_1.01.ZIP" images
./scripts/getArch.sh ./images/9050.tar.gz
./scripts/makeImage.sh 9050
./scripts/inferNetwork.sh 9050
cd ..
python FirmAFL_setup.py 9050 mipsel
  1. modify the run.sh in image_9050 directory as following, in order to emulate firmware with our modified QEMU and kernel, and running on the RAM file.

For mipsel,

ARCH=mipsel
QEMU="./qemu-system-${ARCH}"
KERNEL="./vmlinux.${ARCH}_3.2.1" 
IMAGE="./image.raw"
MEM_FILE="./mem_file"
${QEMU} -m 256 -mem-prealloc -mem-path ${MEM_FILE} -M ${QEMU_MACHINE} -kernel ${KERNEL} \ 

For mipseb,

ARCH=mips
QEMU="./qemu-system-${ARCH}"
KERNEL="./vmlinux.${ARCH}_3.2.1" 
IMAGE="./image.raw"
MEM_FILE="./mem_file"
${QEMU} -m 256 -mem-prealloc -mem-path ${MEM_FILE} -M ${QEMU_MACHINE} -kernel ${KERNEL} \
  1. run the fuzzing process

after running the start.py script, FirmAFL will start the firmware emulation, and after the system initialization(120s), the fuzzing process will start. (Maybe you should use root privilege to run it.)

cd image_9050
python start.py 9050

Related Work

Our system is built on top of TriforceAFL, DECAF, AFL, and Firmadyne.

TriforceAFL: AFL/QEMU fuzzing with full-system emulation, https://github.com/nccgroup/TriforceAFL.

DECAF: "Make it work, make it right, make it fast: building a platform-neutral whole-system dynamic binary analysis platform", Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu, Xujiewen Wang, Rundong Zhou, and Heng Yin, to appear in the International Symposium on Software Testing and Analysis (ISSTA'14), San Jose, CA, July 2014. https://github.com/sycurelab/DECAF.

AFL: american fuzzy lop (2.52b), http://lcamtuf.coredump.cx/afl/.

Firmadyne: Daming D. Chen, Maverick Woo, David Brumley, and Manuel Egele. “Towards automated dynamic analysis for Linux-based embedded firmware,” in Network and Distributed System Security Symposium (NDSS’16), 2016. https://github.com/firmadyne.

Troubleshooting

(1) error: static declaration of ‘memfd_create’ follows non-static declaration

Please see https://blog.csdn.net/newnewman80/article/details/90175033.

(2) failed to find romfile "efi-e1000.rom" when run the "run.sh"

Use the run.sh in FirmAFL_config/9050/ instead.

(3) Fork server crashed with signal 11

Run scripts in start.py sequentially. First run "run.sh", when the testing program starts, run "python test.py", and "user.sh".

(4) For the id "12978", "16116" firmware, since these firmware have more than 1 test case, so we use different image directory name to distinguish them.

Before FirmAFL_setup, 
first, change image directory name image_12978 to image_129780, 
then modify the firmadyne/scratch/12978 to firmadyne/scratch/129780
After that, run python FirmAFL_setup.py 129780 mips
(If you want to test another case for image_12978, you can use image_129781 instead image_129780)
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022