Complete U-net Implementation with keras

Overview

U Net Lowered with Keras

Complete U-net Implementation with keras






Original Paper Link : https://arxiv.org/abs/1505.04597

Special Implementations :


The model is implemented using the original paper. But I have changed the number of filters of the layers. The implemented number of layers are reduced to 25% of the original paper.

Original Model Architecture :

Dataset :


The dataset has been taken from kaggle . It had a specific directory tree, but it was tough to execute dataset building from it, so I prepared an usable dat directory.

Link : https://www.kaggle.com/azkihimmawan/chest-xray-masks-and-defect-detection

Primary Directory Tree :

.
└── root/
    ├── train_images/
    │   └── id/
    │       ├── images/
    │       │   └── id.png
    │       └── masks/
    │           └── id.png
    └── test_images/
        └── id/
            └── id.png

Given Images :

Image Mask

Supporting Libraries :

Numpy opencv Matplotlib

Library Versions :

All versions are up to date as per 14th June 2021.

Dataset Directory Generation :


We have performed operations to ceate the data directory like this :

              .
              └── root/
                  ├── train/
                  │   ├── images/
                  │   │   └── id.png
                  │   └── masks/
                  │       └── id.png
                  └── test/
                      └── id.png

Model Architecture ( U-Net Lowered ):

Model: “UNet-Lowered”

Layer Type Output Shape Param Connected to
input_1 (InputLayer) [(None, 512, 512, 1) 0
conv2d (Conv2D) (None, 512, 512, 16) 160 input_1[0][0]
conv2d_1 (Conv2D) (None, 512, 512, 16) 2320 conv2d[0][0]
max_pooling2d (MaxPooling2D) (None, 256, 256, 16) 0 conv2d_1[0][0]
conv2d_2 (Conv2D) (None, 256, 256, 32) 4640 max_pooling2d[0][0]
conv2d_3 (Conv2D) (None, 256, 256, 32) 9248 conv2d_2[0][0]
max_pooling2d_1 (MaxPooling2D) (None, 128, 128, 32) 0 conv2d_3[0][0]
conv2d_4 (Conv2D) (None, 128, 128, 64) 18496 max_pooling2d_1[0][0]
conv2d_5 (Conv2D) (None, 128, 128, 64) 36928 conv2d_4[0][0]
max_pooling2d_2 (MaxPooling2D) (None, 64, 64, 64) 0 conv2d_5[0][0]
conv2d_6 (Conv2D) (None, 64, 64, 128) 73856 max_pooling2d_2[0][0]
conv2d_7 (Conv2D) (None, 64, 64, 128) 147584 conv2d_6[0][0]
dropout (Dropout) (None, 64, 64, 128) 0 conv2d_7[0][0]
max_pooling2d_3 (MaxPooling2D) (None, 32, 32, 128) 0 dropout[0][0]
conv2d_8 (Conv2D) (None, 32, 32, 256) 295168 max_pooling2d_3[0][0]
conv2d_9 (Conv2D) (None, 32, 32, 256) 590080 conv2d_8[0][0]
dropout_1 (Dropout) (None, 32, 32, 256) 0 conv2d_9[0][0]
up_sampling2d (UpSampling2D) (None, 64, 64, 256) 0 dropout_1[0][0]
conv2d_10 (Conv2D) (None, 64, 64, 128) 131200 up_sampling2d[0][0]
concatenate (Concatenate) (None, 64, 64, 256) 0 dropout[0][0] & conv2d_10[0][0]
conv2d_11 (Conv2D) (None, 64, 64, 128) 295040 concatenate[0][0]
conv2d_12 (Conv2D) (None, 64, 64, 128) 147584
up_sampling2d_1 (UpSampling2D) (None, 128, 128, 128) 0 conv2d_12[0][0]
conv2d_13 (Conv2D) (None, 128, 128, 64) 32832 up_sampling2d_1[0][0]
concatenate_1 (Concatenate) (None, 128, 128, 128) 0 conv2d_5[0][0] & conv2d_13[0][0]
conv2d_14 (Conv2D) (None, 128, 128, 64) 73792 concatenate_1[0][0]
conv2d_15 (Conv2D) (None, 128, 128, 64) 36928 conv2d_14[0][0]
up_sampling2d_2 (UpSampling2D) (None, 256, 256, 64) 0 conv2d_15[0][0]
conv2d_16 (Conv2D) (None, 256, 256, 32) 8224 up_sampling2d_2[0][0]
concatenate_2 (Concatenate) (None, 256, 256, 64) 0 conv2d_3[0][0] & conv2d_16[0][0]
conv2d_17 (Conv2D) (None, 256, 256, 32) 18464 concatenate_2[0][0]
conv2d_18 (Conv2D) (None, 256, 256, 32) 9248 conv2d_17[0][0]
up_sampling2d_3 (UpSampling2D) (None, 512, 512, 32) 0 conv2d_18[0][0]
conv2d_19 (Conv2D) (None, 512, 512, 16) 2064 up_sampling2d_3[0][0]
concatenate_3 (Concatenate) (None, 512, 512, 32) 0 conv2d_1[0][0] & conv2d_19[0][0]
conv2d_20 (Conv2D) (None, 512, 512, 16) 4624 concatenate_3[0][0]
conv2d_21 (Conv2D) (None, 512, 512, 16) 2320 conv2d_20[0][0]
conv2d_22 (Conv2D) (None, 512, 512, 2) 290 conv2d_21[0][0]
conv2d_23 (Conv2D) (None, 512, 512, 1) 3 conv2d_22[0][0]

Data Preparation :

Taken single channels of both image and mask for training.

Hyperparameters :

      Image Shape : (512 , 512 , 1)
      Optimizer : Adam ( Learning Rate : 1e-4 )
      Loss : Binary Cross Entropy 
      Metrics : Accuracy
      Epochs on Training : 100
      Train Validation Ratio : ( 85%-15% )
      Batch Size : 10

Model Evaluation Metrics :

Model Performance on Train Data :

Model Performance on Validation Data :

One task left : Will update the tutorial notebooks soon ;)

Conclusion :

The full model on the simpliefied 1 channel images was giving bad overfitted accuracy. But this structure shows better and efficient tuning over the data.

STAR the repository if this was helpful :) Also follow me on kaggle and Linkedin.

THANK YOU for visiting :)

Owner
Sagnik Roy
Kaggle Expert exploring Computer Vision as no one did!
Sagnik Roy
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023