SimCSE: Simple Contrastive Learning of Sentence Embeddings

Overview

SimCSE: Simple Contrastive Learning of Sentence Embeddings

This repository contains the code and pre-trained models for our paper SimCSE: Simple Contrastive Learning of Sentence Embeddings.

**************************** Updates ****************************

Quick links

Overview

We propose a simple contrastive learning framework that works with both unlabeled and labeled data. Unsupervised SimCSE simply takes an input sentence and predicts itself in a contrastive learning framework, with only standard dropout used as noise. Our supervised SimCSE incorporates annotated pairs from NLI datasets into contrastive learning by using entailment pairs as positives and contradiction pairs as hard negatives. The following figure is an illustration of our models.

Use our models out of the box

Our pre-trained models are now publicly available with HuggingFace's Transformers. Models and their performance are presented as follows:

Model Avg. STS
unsup-simcse-bert-base-uncased 74.54
unsup-simcse-bert-large-uncased 76.05
unsup-simcse-roberta-base 76.50
unsup-simcse-roberta-large 77.47
sup-simcse-bert-base-uncased 81.57
sup-simcse-bert-large-uncased 82.21
sup-simcse-roberta-base 82.52
sup-simcse-roberta-large 83.76

Naming rules: unsup and sup represent "unsupervised" (trained on Wikipedia corpus) and "supervised" (trained on NLI datasets) respectively.

You can easily import our model in an out-of-the-box way with HuggingFace's API:

import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer

# Import our models. The package will take care of downloading the models automatically
tokenizer = AutoTokenizer.from_pretrained("princeton-nlp/sup-simcse-bert-base-uncased")
model = AutoModel.from_pretrained("princeton-nlp/sup-simcse-bert-base-uncased")

# Tokenize input texts
texts = [
    "There's a kid on a skateboard.",
    "A kid is skateboarding.",
    "A kid is inside the house."
]
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")

# Get the embeddings
with torch.no_grad():
    embeddings = model(**inputs,output_hidden_states=True, return_dict=True).pooler_output

# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_sim_0_1 = 1 - cosine(embeddings[0], embeddings[1])
cosine_sim_0_2 = 1 - cosine(embeddings[0], embeddings[2])

print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (texts[0], texts[1], cosine_sim_0_1))
print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (texts[0], texts[2], cosine_sim_0_2))

If you encounter any problem when directly loading the models by HuggingFace's API, you can also download the models manually from the above table and use model = AutoModel.from_pretrained({PATH TO THE DOWNLOAD MODEL}).

If you only want to use our models in an out-of-the-box way, just installing the latest version of torch, transformers and scipy is enough. If you want to use our training or evaluation code, see the requirement section below.

Requirements

First, install PyTorch by following the instructions from the official website. To faithfully reproduce our results, please use the correct 1.7.1 version corresponding to your platforms/CUDA versions. PyTorch version higher than 1.7.1 should also work. For example, if you use Linux and CUDA11 (how to check CUDA version), install PyTorch by the following command,

pip install torch==1.7.1+cu110 -f https://download.pytorch.org/whl/torch_stable.html

If you instead use CUDA <11 or CPU, install PyTorch by the following command,

pip install torch==1.7.1

Then run the following script to install the remaining dependencies,

pip install -r requirements.txt

Evaluation

Our evaluation code for sentence embeddings is based on a modified version of SentEval. It evaluates sentence embeddings on semantic textual similarity (STS) tasks and downstream transfer tasks. For STS tasks, our evaluation takes the "all" setting, and report Spearman's correlation. See our paper (Appendix B) for evaluation details.

Before evaluation, please download the evaluation datasets by running

cd SentEval/data/downstream/
bash get_transfer_data.bash

Then come back to the root directory, you can evaluate any transformers-based pre-trained models using our evaluation code. For example,

python evaluation.py \
    --model_name_or_path princeton-nlp/sup-simcse-bert-base-uncased \
    --pooler cls \
    --task_set sts \
    --mode test

which is expected to output the results in a tabular format:

------ test ------
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
| STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness |  Avg. |
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
| 75.30 | 84.67 | 80.19 | 85.40 | 80.82 |    84.26     |      80.39      | 81.58 |
+-------+-------+-------+-------+-------+--------------+-----------------+-------+

Arguments for the evaluation script are as follows,

  • --model_name_or_path: The name or path of a transformers-based pre-trained checkpoint. You can directly use the models in the above table, e.g., princeton-nlp/sup-simcse-bert-base-uncased.
  • --pooler: Pooling method. Now we support
    • cls (default): Use the representation of [CLS] token. A linear+activation layer is applied after the representation (it's in the standard BERT implementation). If you use SimCSE, you should use this option.
    • cls_before_pooler: Use the representation of [CLS] token without the extra linear+activation.
    • avg: Average embeddings of the last layer. If you use checkpoints of SBERT/SRoBERTa (paper), you should use this option.
    • avg_top2: Average embeddings of the last two layers.
    • avg_first_last: Average embeddings of the first and last layers. If you use vanilla BERT or RoBERTa, this works the best.
  • --mode: Evaluation mode
    • test (default): The default test mode. To faithfully reproduce our results, you should use this option.
    • dev: Report the development set results. Note that in STS tasks, only STS-B and SICK-R have development sets, so we only report their numbers. It also takes a fast mode for transfer tasks, so the running time is much shorter than the test mode (though numbers are slightly lower).
    • fasttest: It is the same as test, but with a fast mode so the running time is much shorter, but the reported numbers may be lower (only for transfer tasks).
  • --task_set: What set of tasks to evaluate on (if set, it will override --tasks)
    • sts (default): Evaluate on STS tasks, including STS 12~16, STS-B and SICK-R. This is the most commonly-used set of tasks to evaluate the quality of sentence embeddings.
    • transfer: Evaluate on transfer tasks.
    • full: Evaluate on both STS and transfer tasks.
    • na: Manually set tasks by --tasks.
  • --tasks: Specify which dataset(s) to evaluate on. Will be overridden if --task_set is not na. See the code for a full list of tasks.

Training

Data

For unsupervised SimCSE, we sample 1 million sentences from English Wikipedia; for supervised SimCSE, we use the SNLI and MNLI datasets. You can run data/download_wiki.sh and data/download_nli.sh to download the two datasets.

Training scripts

We provide example training scripts for both unsupervised and supervised SimCSE. In run_unsup_example.sh, we provide a single-GPU (or CPU) example for the unsupervised version, and in run_sup_example.sh we give a multiple-GPU example for the supervised version. Both scripts call train.py for training. We explain the arguments in following:

  • --train_file: Training file path. We support "txt" files (one line for one sentence) and "csv" files (2-column: pair data with no hard negative; 3-column: pair data with one corresponding hard negative instance). You can use our provided Wikipedia or NLI data, or you can use your own data with the same format.
  • --model_name_or_path: Pre-trained checkpoints to start with. For now we support BERT-based models (bert-base-uncased, bert-large-uncased, etc.) and RoBERTa-based models (RoBERTa-base, RoBERTa-large, etc.).
  • --temp: Temperature for the contrastive loss.
  • --pooler_type: Pooling method. It's the same as the --pooler_type in the evaluation part.
  • --hard_negative_weight: If using hard negatives (i.e., there are 3 columns in the training file), this is the logarithm of the weight. For example, if the weight is 1, then this argument should be set as 0 (default value).
  • --do_mlm: Whether to use the MLM auxiliary objective. If True:
    • --mlm_weight: Weight for the MLM objective.
    • --mlm_probability: Masking rate for the MLM objective.

All the other arguments are standard Huggingface's transformers training arguments. Some of the often-used arguments are: --output_dir, --learning_rate, --per_device_train_batch_size. In our example scripts, we also set to evaluate the model on the STS-B development set (need to download the dataset following the evaluation section) and save the best checkpoint.

REPRODUCTION: For results in the paper, we use Nvidia 3090 GPUs with CUDA 11. Using different types of devices or different versions of CUDA/other softwares may lead to slightly different performance.

Convert models

IMPORTANT: Our saved checkpoints are slightly different from Huggingface's pre-trained checkpoints. Run python simcse_to_huggingface.py --path {PATH_TO_CHECKPOINT_FOLDER} to convert it. After that, you can evaluate it by our evaluation code or directly use it out of the box.

Bugs or questions?

If you have any questions related to the code or the paper, feel free to email Tianyu ([email protected]) and Xingcheng ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

Please cite our paper if you use SimCSE in your work:

@article{gao2021simcse,
   title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
   author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
   journal={arXiv preprint arXiv:2104.08821},
   year={2021}
}
Comments
  • Troubles reproducing the results

    Troubles reproducing the results

    Hi, folks! Thank you very much for the hard work (^^) I have a question on how to reproduce the results -- not that I am aiming to spot the differences, just making sure that I am running the code correctly.

    I use the run_run_unsup_example.sh script to train the unsupervised SimCSE. At the end of the training procedure, I run evaluation as follows: time CUDA_VISIBLE_DEVICES=0 python evaluation.py --model_name_or_path result/my-unsup-simcse-bert-base-uncased --pooler cls --task_set sts --mode test. The results table I am getting is:

    ------ test ------
    +-------+-------+-------+-------+-------+--------------+-----------------+-------+
    | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness |  Avg. |
    +-------+-------+-------+-------+-------+--------------+-----------------+-------+
    | 46.88 | 56.47 | 58.33 | 65.43 | 58.92 |    56.71     |      55.36      | 56.87 |
    +-------+-------+-------+-------+-------+--------------+-----------------+-------+
    

    I believe the table i should be comparing to is Table 5 from the paper, the relevant row shows:

    ∗SimCSE-BERTbase | 68.40 | 82.41 | 74.38 | 80.91 | 78.56 | 76.85 | 72.23 | 76.25|
    

    Which is far better than what i get. Can you maybe help me understand if I am doing smth wrong? I follow the main README.md file, the content of the run_run_unsup_example.sh script is:

    python train.py \
        --model_name_or_path bert-base-uncased \
        --train_file data/wiki1m_for_simcse.txt \
        --output_dir result/my-unsup-simcse-bert-base-uncased \
        --num_train_epochs 1 \
        --per_device_train_batch_size 64 \
        --learning_rate 3e-5 \
        --max_seq_length 32 \
        --evaluation_strategy steps \
        --metric_for_best_model stsb_spearman \
        --load_best_model_at_end \
        --eval_steps 125 \
        --pooler_type cls \
        --mlp_only_train \
        --overwrite_output_dir \
        --temp 0.05 \
        --do_train \
        --do_eval \
        --fp16 \
        "$@"
    
    opened by ypuzikov 17
  • No attribute validation_file in train.py?

    No attribute validation_file in train.py?

    os.system(f'bash ./data/download_nli.sh')
    os.system(
        'cd SimCSE;'
        'python train.py '
        '--model_name_or_path bert-base-uncased'
        '--train_file data/nli_for_simcse.csv '
        '--output_dir result/my-sup-simcse-bert-base-uncased '   
        '--num_train_epochs 3 '
        '--per_device_train_batch_size 128 '
        '--learning_rate 5e-5 '
        '--max_seq_length 32 '
        '--evaluation_strategy steps '
        '--metric_for_best_model stsb_spearman '
        '--load_best_model_at_end '
        '--eval_steps 125 '
        '--pooler_type cls '
        '--overwrite_output_dir '
        '--temp 0.05 '
        '--do_train '
        '--do_eval '
        '--fp16 '
        '"$@"'
    )
    
    Traceback (most recent call last):
      File "/Users/sumner/Downloads/Replication/SimCSE/train.py", line 584, in <module>
        main()
      File "/Users/sumner/Downloads/Replication/SimCSE/train.py", line 257, in main
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
      File "/Users/sumner/miniforge3/lib/python3.9/site-packages/transformers/hf_argparser.py", line 157, in parse_args_into_dataclasses
        obj = dtype(**inputs)
      File "<string>", line 12, in __init__
      File "/Users/sumner/Downloads/Replication/SimCSE/train.py", line 179, in __post_init__
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
    AttributeError: 'DataTrainingArguments' object has no attribute 'validation_file'
    
    opened by SumNeuron 9
  • Cannot reproduce the result~

    Cannot reproduce the result~

    Hello, and thank you for this useful code! I tried to reproduce the unsupervisd BERT+SimCSE results, but failed. My environment setup is as follows:

    pytorch=1.7.1 cudatoolkit=11.1 Single RTX 3090 The following script is the training script I used (exactly the same as run_unsup_example.sh).

    python train.py
    --model_name_or_path bert-base-uncased
    --train_file data/wiki1m_for_simcse.txt
    --output_dir result/my-unsup-simcse-bert-base-uncased
    --num_train_epochs 1
    --per_device_train_batch_size 64
    --learning_rate 3e-5
    --max_seq_length 32
    --evaluation_strategy steps
    --metric_for_best_model stsb_spearman
    --load_best_model_at_end
    --eval_steps 125
    --pooler_type cls
    --mlp_only_train
    --overwrite_output_dir
    --temp 0.05
    --do_train
    --do_eval
    --fp16
    "$@" However, there is a runtimeerror when training is finished. I obtained following evaluation results:

    +-------+-------+-------+-------+-------+--------------+-----------------+-------+ | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. | +-------+-------+-------+-------+-------+--------------+-----------------+-------+ | 64.28 | 79.15 | 70.99 | 78.38 | 78.26 | 75.62 | 67.58 | 73.47 | +-------+-------+-------+-------+-------+--------------+-----------------+-------+

    I think the gap (2.8 in average) is too large. Is it because of the error? How to obtain ~76 results in STS tasks?

    opened by liuh236 9
  • Invalid tensor shape

    Invalid tensor shape

    I keep getting the following error at the end of the first epoch: "RuntimeError: Input tensor at index 1 has invalid shape [22, 44], but expected [22, 46]". This happens on a custom dataset. However, the dataset is thoroughly cleaned and should be valid.

    The error happens in: comm.py, line 231

    Any idea what might be causing this?

    opened by peregilk 8
  • Geting different testing resutls in different testing time

    Geting different testing resutls in different testing time

    Thanks for your great works. We want to train a simcse-bert-base model. We have tested the trained model two times and get different testing results with the following scripts, python evaluation.py --model_name_or_path result/my-unsup-simcse-bert-base-uncased

    1st results image 2nd results image

    The python packages

    (simcse) H:\contrast\SimCSE-main\SimCSE-main>pip freeze
    analytics-python==1.4.0
    apex==0.1
    backoff==1.10.0
    bcrypt==3.2.0
    certifi==2021.5.30
    cffi==1.14.6
    charset-normalizer==2.0.6
    click==8.0.1
    colorama==0.4.4
    cryptography==3.4.8
    cycler==0.10.0
    datasets==1.4.0
    dill==0.3.4
    ffmpy==0.3.0
    filelock==3.1.0
    Flask==2.0.1
    Flask-CacheBuster==1.0.0
    Flask-Cors==3.0.10
    Flask-Login==0.5.0
    fsspec==2021.10.0
    gradio==2.3.6
    huggingface-hub==0.0.2
    idna==3.2
    importlib-metadata==4.8.1
    itsdangerous==2.0.1
    Jinja2==3.0.1
    joblib==1.0.1
    kiwisolver==1.3.2
    markdown2==2.4.1
    MarkupSafe==2.0.1
    matplotlib==3.4.3
    monotonic==1.6
    multiprocess==0.70.12.2
    numpy==1.21.2
    packaging==21.0
    pandas==1.1.5
    paramiko==2.7.2
    Pillow==8.3.2
    prettytable==2.1.0
    pyarrow==5.0.0
    pycparser==2.20
    pycryptodome==3.10.4
    PyNaCl==1.4.0
    pyparsing==2.4.7
    python-dateutil==2.8.2
    pytz==2021.1
    PyYAML==5.4.1
    regex==2021.9.24
    requests==2.26.0
    sacremoses==0.0.46
    scikit-learn==0.24.0
    scipy==1.5.4
    six==1.16.0
    threadpoolctl==2.2.0
    tokenizers==0.9.4
    torch==1.9.1+cu102
    torchaudio==0.9.1
    torchvision==0.10.1+cu102
    tqdm==4.49.0
    transformers==4.2.1
    typing-extensions==3.10.0.2
    urllib3==1.26.7
    wcwidth==0.2.5
    Werkzeug==2.0.1
    wincertstore==0.2
    xxhash==2.0.2
    zipp==3.5.0
    
    
    opened by marscrazy 8
  • Why the max_sequence_length is just 32

    Why the max_sequence_length is just 32

    Hello, I noticed that the max_sequence_length in your code is set to 32. But the number of tokens of most of sentences in Eng WIKI exceed 32. Why the max sequence_length is 32? Thank you

    opened by leoozy 8
  • error when training unsupverised simcse

    error when training unsupverised simcse

    When i run run_unsup_example.sh and when i almost finished training, an error happend:

    Traceback (most recent call last): File "train.py", line 584, in main() File "train.py", line 548, in main train_result = trainer.train(model_path=model_path) File "/home/v-nuochen/SimCSE/simcse/trainers.py", line 464, in train tr_loss += self.training_step(model, inputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/transformers/trainer.py", line 1248, in training_step loss = self.compute_loss(model, inputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/transformers/trainer.py", line 1277, in compute_loss outputs = model(**inputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 162, in forward return self.gather(outputs, self.output_device) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 174, in gather return gather(outputs, output_device, dim=self.dim) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/scatter_gather.py", line 68, in gather res = gather_map(outputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/scatter_gather.py", line 62, in gather_map for k in out)) File "", line 6, in init File "/home/v-nuochen/.local/lib/python3.6/site-packages/transformers/file_utils.py", line 1383, in post_init for element in iterator: File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/scatter_gather.py", line 62, in for k in out)) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/scatter_gather.py", line 55, in gather_map return Gather.apply(target_device, dim, *outputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/_functions.py", line 71, in forward return comm.gather(inputs, ctx.dim, ctx.target_device) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/comm.py", line 230, in gather return torch._C._gather(tensors, dim, destination)

    RuntimeError: Input tensor at index 7 has invalid shape [2, 2], but expected [2, 9] 100%|█████████████████████████████████████████████████████████████████████████████████▉| 1953/1954 [18:36<00:00, 1.75it/s]

    Could you please tell me why?

    opened by cn-boop 8
  • Error while computing cosine similarity

    Error while computing cosine similarity

    Hello! I get the following error when comparing one sentence vs many others using similarities = model.similarity(keyword, phrases) the model loaded is model = SimCSE("princeton-nlp/sup-simcse-bert-base-uncased")

    ` ~\AppData\Roaming\Python\Python38\site-packages\simcse\tool.py in similarity(self, queries, keys, device) 110 111 # returns an N*M similarity array --> 112 similarities = cosine_similarity(query_vecs, key_vecs) 113 114 if single_query:

    ~\anaconda3\lib\site-packages\sklearn\metrics\pairwise.py in cosine_similarity(X, Y, dense_output) 1178 # to avoid recursive import 1179 -> 1180 X, Y = check_pairwise_arrays(X, Y) 1181 1182 X_normalized = normalize(X, copy=True)

    ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs) 61 extra_args = len(args) - len(all_args) 62 if extra_args <= 0: ---> 63 return f(*args, **kwargs) 64 65 # extra_args > 0

    ~\anaconda3\lib\site-packages\sklearn\metrics\pairwise.py in check_pairwise_arrays(X, Y, precomputed, dtype, accept_sparse, force_all_finite, copy) 147 copy=copy, force_all_finite=force_all_finite, 148 estimator=estimator) --> 149 Y = check_array(Y, accept_sparse=accept_sparse, dtype=dtype, 150 copy=copy, force_all_finite=force_all_finite, 151 estimator=estimator)

    ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs) 61 extra_args = len(args) - len(all_args) 62 if extra_args <= 0: ---> 63 return f(*args, **kwargs) 64 65 # extra_args > 0

    ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator) 671 array = array.astype(dtype, casting="unsafe", copy=False) 672 else: --> 673 array = np.asarray(array, order=order, dtype=dtype) 674 except ComplexWarning as complex_warning: 675 raise ValueError("Complex data not supported\n"

    ValueError: could not convert string to float:`

    opened by gaurav-95 7
  • The alignment computed with function implemented by Wang and Isola differs a lot with the paper

    The alignment computed with function implemented by Wang and Isola differs a lot with the paper

    The alignment computed with the function implemented by Wang and Isola differs link a lot with your paper. I compute the alignment by that function directly, and I get a score of 1.21. But as shown in Fig.3 the score of the paper is less than 0.25. Could you tell me how to compute the alignment in this paper? My code is as follows:

    def align_loss(x, y, alpha=2):    
        return (x - y).norm(p=2, dim=1).pow(alpha).mean()
    
    def uniform_loss(x, t=2):
        return torch.pdist(x, p=2).pow(2).mul(-t).exp().mean().log()
    
    def get_pair_emb(model, input_ids, attention_mask,token_type_ids):
        outputs = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
        pooler_output = outputs.pooler_output
        pooler_output = pooler_output.view((batch_size, 2, pooler_output.size(-1)))
        z1, z2 = pooler_output[:,0], pooler_output[:,1]
        return z1,z2
    
    def get_align(model, dataloader):
        align_all = []
        unif_all = []
        with torch.no_grad():        
            for data in dataloader:
                input_ids = torch.cat((data['input_ids'][0],data['input_ids'][1])).cuda()
                attention_mask = torch.cat((data['attention_mask'][0],data['attention_mask'][1])).cuda()
                token_type_ids = torch.cat((data['token_type_ids'][0],data['token_type_ids'][1])).cuda()
    
                z1,z2 = get_pair_emb(model, input_ids, attention_mask, token_type_ids)        
                z1 = F.normalize(z1,p=2,dim=1)
                z2 = F.normalize(z2,p=2,dim=1)
    
                align_all.append(align_loss(z1, z2, alpha=2))
                
        return align_all
    
    def get_unif(model, dataloader):
        unif_all = []
        with torch.no_grad():        
            for data in dataloader:
                input_ids = torch.cat((data['input_ids'][0],data['input_ids'][1])).cuda()
                attention_mask = torch.cat((data['attention_mask'][0],data['attention_mask'][1])).cuda()
                token_type_ids = torch.cat((data['token_type_ids'][0],data['token_type_ids'][1])).cuda()
    
                z1,z2 = get_pair_emb(model, input_ids, attention_mask, token_type_ids)        
                z1 = F.normalize(z1,p=2,dim=1)
                z2 = F.normalize(z2,p=2,dim=1)
                z = torch.cat((z1,z2))
                unif_all.append(uniform_loss(z, t=2))
    
        return unif_all
    
    
    
    model = AutoModel.from_pretrained("princeton-nlp/unsup-simcse-bert-base-uncased")
    model = model.cuda()
    model_name = "unsup-simcse-bert-base-uncased"
    
    align_all = get_align(model, pos_loader)
    
    align = sum(align_all)/len(align_all)
    
    
    opened by xbdxwyh 7
  • Error when I run unsupervised:RuntimeError: Input tensor at index 1 has invalid shape [32, 32], but expected [32, 33]

    Error when I run unsupervised:RuntimeError: Input tensor at index 1 has invalid shape [32, 32], but expected [32, 33]

    File "train.py", line 591, in main() File "train.py", line 555, in main train_result = trainer.train(model_path=model_path) File "/mnt/data/data/home/zhanghaoran/learn_project/SimCSE-main/simcse/trainers.py", line 464, in train tr_loss += self.training_step(model, inputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/transformers/trainer.py", line 1248, in training_step loss = self.compute_loss(model, inputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/transformers/trainer.py", line 1277, in compute_loss outputs = model(**inputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl return forward_call(*input, **kwargs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 169, in forward return self.gather(outputs, self.output_device) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 181, in gather return gather(outputs, output_device, dim=self.dim) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 78, in gather res = gather_map(outputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 69, in gather_map return type(out)((k, gather_map([d[k] for d in outputs])) File "", line 7, in init File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/transformers/file_utils.py", line 1383, in post_init for element in iterator: File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 69, in return type(out)((k, gather_map([d[k] for d in outputs])) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 63, in gather_map return Gather.apply(target_device, dim, *outputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/_functions.py", line 75, in forward return comm.gather(inputs, ctx.dim, ctx.target_device) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/comm.py", line 235, in gather return torch._C._gather(tensors, dim, destination) RuntimeError: Input tensor at index 1 has invalid shape [32, 32], but expected [32, 33]

    opened by xing-ye 6
  • computing alignment and uniformity

    computing alignment and uniformity

    I'm following Wang and Isola to compute alignment and uniformity (using their given code in Fig 5, http://proceedings.mlr.press/v119/wang20k/wang20k.pdf) to reproduce Fig 2 in your paper but fail. What I saw is that the alignment decreases whereas the uniformity is almost unchanged, which is completely different from Fig 2. Details are below.

    To compute alignment and uniformity, I changed line 66-79 file SimCSE/blob/main/SentEval/senteval/sts.py by adding the code from Wang and Isola:

                ...
                input1, input2, gs_scores = self.data[dataset]
                all_enc1 = []
                all_enc2 = []
                for ii in range(0, len(gs_scores), params.batch_size):
                    batch1 = input1[ii:ii + params.batch_size]
                    batch2 = input2[ii:ii + params.batch_size]
    
                    # we assume get_batch already throws out the faulty ones
                    if len(batch1) == len(batch2) and len(batch1) > 0:
                        enc1 = batcher(params, batch1)
                        enc2 = batcher(params, batch2)
    
                        all_enc1.append(enc1.detach())
                        all_enc2.append(enc2.detach())
                        ...
                
                 def _norm(x, eps=1e-8): 
                    xnorm = torch.linalg.norm(x, dim=-1)
                    xnorm = torch.max(xnorm, torch.ones_like(xnorm) * eps)
                    return x / xnorm.unsqueeze(dim=-1)
    
                # from Wang and Isola (with a bit of modification)
                # only consider pairs with gs > 4 (from footnote 3)
                def _lalign(x, y, ok, alpha=2):
                    return ((_norm(x) - _norm(y)).norm(dim=1).pow(alpha) * ok).sum() / ok.sum()
                
                def _lunif(x, t=2):
                    sq_pdist = torch.pdist(_norm(x), p=2).pow(2)
                    return sq_pdist.mul(-t).exp().mean().log()
    
                ok = (torch.Tensor(gs_scores) > 4).int()
                align = _lalign(
                    torch.cat(all_enc1), 
                    torch.cat(all_enc2), 
                    ok).item()
    
                # consider all sentences (from footnote 3)
                unif = _lunif(torch.cat(all_enc1 + all_enc2)).item()
                logging.info(f'align {align}\t\t uniform {unif}')
    
    

    The output (which also shows spearman on stsb dev set) is

    align 0.2672557830810547 uniform -2.5320491790771484 'eval_stsb_spearman': 0.6410360622426501, 'epoch': 0.01
    align 0.2519586384296417 uniform -2.629746913909912 'eval_stsb_spearman': 0.6859433315879646, 'epoch': 0.02
    align 0.2449202835559845 uniform -2.5870673656463623 'eval_stsb_spearman': 0.7198291431689111, 'epoch': 0.02
    align 0.22248655557632446 uniform -2.557053565979004 'eval_stsb_spearman': 0.7538674335025006, 'epoch': 0.03
    align 0.22624073922634125 uniform -2.6622540950775146 'eval_stsb_spearman': 0.7739112284380941, 'epoch': 0.04
    align 0.22583454847335815 uniform -2.5768041610717773 'eval_stsb_spearman': 0.7459814500897265, 'epoch': 0.05
    align 0.22845414280891418 uniform -2.5601420402526855 'eval_stsb_spearman': 0.7683573046863201, 'epoch': 0.06
    align 0.22689573466777802 uniform -2.560364007949829 'eval_stsb_spearman': 0.7766837072148098, 'epoch': 0.06
    align 0.22807720303535461 uniform -2.5539987087249756 'eval_stsb_spearman': 0.7692866256106997, 'epoch': 0.07
    align 0.20026598870754242 uniform -2.50628399848938 'eval_stsb_spearman': 0.7939010002048291, 'epoch': 0.08
    align 0.20466476678848267 uniform -2.535121440887451 'eval_stsb_spearman': 0.8011027122797894, 'epoch': 0.09
    align 0.2030458152294159 uniform -2.5547776222229004 'eval_stsb_spearman': 0.8044623693996088, 'epoch': 0.1
    align 0.20119303464889526 uniform -2.5325350761413574 'eval_stsb_spearman': 0.8070404405714893, 'epoch': 0.1
    align 0.19329915940761566 uniform -2.488903522491455 'eval_stsb_spearman': 0.8220311448535872, 'epoch': 0.11
    align 0.19556573033332825 uniform -2.5273373126983643 'eval_stsb_spearman': 0.8183500898254208, 'epoch': 0.12
    align 0.19112755358219147 uniform -2.4959402084350586 'eval_stsb_spearman': 0.8146496522216178, 'epoch': 0.13
    align 0.18491695821285248 uniform -2.4762508869171143 'eval_stsb_spearman': 0.8088527080054781, 'epoch': 0.14
    align 0.19815796613693237 uniform -2.5905373096466064 'eval_stsb_spearman': 0.8333401056438776, 'epoch': 0.14
    align 0.1950838416814804 uniform -2.4894299507141113 'eval_stsb_spearman': 0.8293951990138778, 'epoch': 0.15
    align 0.19777807593345642 uniform -2.5985066890716553 'eval_stsb_spearman': 0.8268435050866446, 'epoch': 0.16
    align 0.2016373723745346 uniform -2.616013765335083 'eval_stsb_spearman': 0.8199602019842832, 'epoch': 0.17
    align 0.19906719028949738 uniform -2.57528018951416 'eval_stsb_spearman': 0.8094202934650283, 'epoch': 0.18
    align 0.18731220066547394 uniform -2.517271041870117 'eval_stsb_spearman': 0.8231122818777513, 'epoch': 0.18
    align 0.18802008032798767 uniform -2.508246421813965 'eval_stsb_spearman': 0.8248523275594679, 'epoch': 0.19
    align 0.20015984773635864 uniform -2.4563515186309814 'eval_stsb_spearman': 0.8061084765791668, 'epoch': 0.2
    align 0.2015877515077591 uniform -2.5121841430664062 'eval_stsb_spearman': 0.8113328705761889, 'epoch': 0.21
    align 0.20187602937221527 uniform -2.5167288780212402 'eval_stsb_spearman': 0.8124173161634701, 'epoch': 0.22
    align 0.20096932351589203 uniform -2.5201926231384277 'eval_stsb_spearman': 0.8127754107163266, 'epoch': 0.22
    align 0.19966433942317963 uniform -2.5182201862335205 'eval_stsb_spearman': 0.8152261579570365, 'epoch': 0.23
    align 0.19897222518920898 uniform -2.557129383087158 'eval_stsb_spearman': 0.8169452712415308, 'epoch': 0.24
    ...
    

    We can see that alignment drops from 0.26 to less than 0.20 whereas uniformity is still around -2.55. It means that reducing alignment is key, not uniformity. This trend is completely different from Fig 2.

    Did you also use the code from Wang and Isola like I did? If possible, could you please provide the code for reproducing alignment and uniformity?

    opened by lephong 6
  • Why one epoch for unsupervised?

    Why one epoch for unsupervised?

    Hello,

    Thanks for your amazing work on SimCSE!

    I was wondering why only one epoch was chosen for unsupervised, while supervised approach does 3 epochs.

    What is the reason?

    Thanks in advance :)

    opened by jeongwoopark0514 0
  • what are the negative samples if removing the hard negative? (train with supervised verison)

    what are the negative samples if removing the hard negative? (train with supervised verison)

    Hi, I follow your supervised example, but remove the hard negative from the dataset, In this may, where does the negative sample come from? Does it take the other 'sent0's or 'sent1's in the same batch as the negative sample? Would you give me some instructions? thanks a lot!

    opened by Rachel-Yeah-Lee 0
  • Can't Install on Mac M1

    Can't Install on Mac M1

    Hi,

    I can't install SimCSE on my macbook pro because the version of scipy used as a dependency can't be installed on on M1, I think because it doesn't support ARM. Would it be possible to to change the scipy dependency to a newer version that does, or is there another workaround?

    Thanks, Shawn

    opened by shawnjhenry 1
Releases(0.4)
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
Snowball compiler and stemming algorithms

Snowball is a small string processing language for creating stemming algorithms for use in Information Retrieval, plus a collection of stemming algori

Snowball Stemming language and algorithms 613 Jan 07, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time

DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches the answers out of 60 billion phrases in Wikipedia, it is also v

Jinhyuk Lee 543 Jan 08, 2023
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
The (extremely) naive sentiment classification function based on NBSVM trained on wisesight_sentiment

thai_sentiment The naive sentiment classification function based on NBSVM trained on wisesight_sentiment วิธีติดตั้ง pip install thai_sentiment==0.1.3

Charin 7 Dec 08, 2022
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022