Simple tools for logging and visualizing, loading and training

Overview

TNT

TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is designed to enable rapid iteration with any model or training regimen.

travis Documentation Status

Installation

TNT can be installed with pip. To do so, run:

pip install torchnet

If you run into issues, make sure that Pytorch is installed first.

You can also install the latest verstion from master. Just run:

pip install git+https://github.com/pytorch/[email protected]

To update to the latest version from master:

pip install --upgrade git+https://github.com/pytorch/[email protected]

About

TNT (imported as torchnet) is a framework for PyTorch which provides a set of abstractions for PyTorch aiming at encouraging code re-use as well as encouraging modular programming. It provides powerful dataloading, logging, and visualization utilities.

The project was inspired by TorchNet, and legend says that it stood for “TorchNetTwo”. Since the deprecation of TorchNet TNT has developed on its own.

For example, TNT provides simple methods to record model preformance in the torchnet.meter module and to log them to Visdom (or in the future, TensorboardX) with the torchnet.logging module.

In the future, TNT will also provide strong support for multi-task learning and transfer learning applications. It currently supports joint training data loading through torchnet.utils.MultiTaskDataLoader.

Most of the modules support NumPy arrays as well as PyTorch tensors on input, and so could potentially be used with other frameworks.

Getting Started

See some of the examples in https://github.com/pytorch/examples. We would like to include some walkthroughs in the docs (contributions welcome!).

[LEGACY] Differences with lua version

What's been ported so far:

  • Datasets:
    • BatchDataset
    • ListDataset
    • ResampleDataset
    • ShuffleDataset
    • TensorDataset [new]
    • TransformDataset
  • Meters:
    • APMeter
    • mAPMeter
    • AverageValueMeter
    • AUCMeter
    • ClassErrorMeter
    • ConfusionMeter
    • MovingAverageValueMeter
    • MSEMeter
    • TimeMeter
  • Engines:
    • Engine
  • Logger
    • Logger
    • VisdomLogger
    • MeterLogger [new, easy to plot multi-meter via Visdom]

Any dataset can now be plugged into torch.utils.DataLoader, or called .parallel(num_workers=8) to utilize multiprocessing.

Comments
  • Cleanup PT-D imports

    Cleanup PT-D imports

    Summary: The flow logic around torch.dist imports results in large number of pyre errors; would be preferable to just raise on importing as opposed to silently fail to import bindings.

    Cons: Some percentage (MacOS?) of users may have notebooks that imports pytorch.distributed, although would think small, since any attempt to call parts of the library would just fail...

    fb: TODO: assuming ok, will remove the 10's-100's of unused pyre ignores no longer required.

    Differential Revision: D39842273

    cla signed fb-exported Reverted 
    opened by dstaay-fb 10
  • Add more datasets

    Add more datasets

    Added:

    • SplitDataset
    • ConcatDataset

    Made load an optional parameter in ListDataset so that it can be used as TableDataset.

    Added seed to resample in ShuffleDataset

    I don't understand why elem_list has to torch.LongTensor if tensor in ListDataset (see here). It seems pointless.

    Sasank.

    opened by chsasank 8
  • Update the train() API parameter to take a state

    Update the train() API parameter to take a state

    Summary: Allow the states to be set up outside of the train() function, provides better flexibility. However, the state becomes an opaque object that might be modified accidentally.

    Suggest, we should move dataloader out of the state. and make the state immutable.

    Reviewed By: ananthsub

    Differential Revision: D40233501

    cla signed fb-exported 
    opened by zzzwen 7
  • Fix tests for CI

    Fix tests for CI

    Summary: Seeing errors like this in CI on trunk:

        from torchtnt.tests.runner.utils import DummyPredictUnit, generate_random_dataloader
    E   ModuleNotFoundError: No module named 'torchtnt.tests'
    

    moving the test utils to resolve it

    Differential Revision: D38774677

    cla signed fb-exported 
    opened by ananthsub 6
  • I found it would be failed when initialize MeterLogger server with `http://` head.

    I found it would be failed when initialize MeterLogger server with `http://` head.

    i found it would be failed when initialize MeterLogger server with http:// head.

    >>> a = MeterLogger(server="http://localhost", port=8097, env='hello')
    >>> b = torch.Tensor([1])
    >>> a.updateLoss(b, 'loss')
    >>> a.resetMeter(mode='Train', iepoch=1)
    

    Error message here

    Exception in user code:
    ------------------------------------------------------------
    Traceback (most recent call last):
      File "/home/txk/.local/lib/python3.6/site-packages/urllib3/connection.py", line 141, in _new_conn
        (self.host, self.port), self.timeout, **extra_kw)
      File "/home/txk/.local/lib/python3.6/site-packages/urllib3/util/connection.py", line 60, in create_connection
        for res in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM):
      File "/usr/lib/python3.6/socket.py", line 745, in getaddrinfo
        for res in _socket.getaddrinfo(host, port, family, type, proto, flags):
    socket.gaierror: [Errno -2] Name or service not known
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "/home/txk/.local/lib/python3.6/site-packages/urllib3/connectionpool.py", line 601, in urlopen
        chunked=chunked)
      File "/home/txk/.local/lib/python3.6/site-packages/urllib3/connectionpool.py", line 357, in _make_request
        conn.request(method, url, **httplib_request_kw)
      File "/usr/lib/python3.6/http/client.py", line 1239, in request
        self._send_request(method, url, body, headers, encode_chunked)
      File "/usr/lib/python3.6/http/client.py", line 1285, in _send_request
        self.endheaders(body, encode_chunked=encode_chunked)
      File "/usr/lib/python3.6/http/client.py", line 1234, in endheaders
        self._send_output(message_body, encode_chunked=encode_chunked)
      File "/usr/lib/python3.6/http/client.py", line 1026, in _send_output
        self.send(msg)
      File "/usr/lib/python3.6/http/client.py", line 964, in send
        self.connect()
      File "/home/txk/.local/lib/python3.6/site-packages/urllib3/connection.py", line 166, in connect
        conn = self._new_conn()
      File "/home/txk/.local/lib/python3.6/site-packages/urllib3/connection.py", line 150, in _new_conn
        self, "Failed to establish a new connection: %s" % e)
    urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7f6cc08ce198>: Failed to establish a new connection: [Errno -2] Name or service not known
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "/home/txk/.local/lib/python3.6/site-packages/requests/adapters.py", line 440, in send
        timeout=timeout
      File "/home/txk/.local/lib/python3.6/site-packages/urllib3/connectionpool.py", line 639, in urlopen
        _stacktrace=sys.exc_info()[2])
      File "/home/txk/.local/lib/python3.6/site-packages/urllib3/util/retry.py", line 388, in increment
        raise MaxRetryError(_pool, url, error or ResponseError(cause))
    urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='http', port=80): Max retries exceeded with url: //localhost:8097/events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f6cc08ce198>: Failed to establish a new connection: [Errno -2] Name or service not known',))
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "/home/txk/.local/lib/python3.6/site-packages/visdom/__init__.py", line 261, in _send
        data=json.dumps(msg),
      File "/home/txk/.local/lib/python3.6/site-packages/requests/api.py", line 112, in post
        return request('post', url, data=data, json=json, **kwargs)
      File "/home/txk/.local/lib/python3.6/site-packages/requests/api.py", line 58, in request
        return session.request(method=method, url=url, **kwargs)
      File "/home/txk/.local/lib/python3.6/site-packages/requests/sessions.py", line 508, in request
        resp = self.send(prep, **send_kwargs)
      File "/home/txk/.local/lib/python3.6/site-packages/requests/sessions.py", line 618, in send
        r = adapter.send(request, **kwargs)
      File "/home/txk/.local/lib/python3.6/site-packages/requests/adapters.py", line 508, in send
        raise ConnectionError(e, request=request)
    requests.exceptions.ConnectionError: HTTPConnectionPool(host='http', port=80): Max retries exceeded with url: //localhost:8097/events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f6cc08ce198>: Failed to establish a new connection: [Errno -2] Name or service not known',))
    
    
    opened by TuXiaokang 6
  • Some code format error exists in `meterlogger.py`

    Some code format error exists in `meterlogger.py`

    error message like this

    >>> import torchnet
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/usr/local/lib/python3.6/site-packages/torchnet/__init__.py", line 5, in <module>
        from . import logger
      File "/usr/local/lib/python3.6/site-packages/torchnet/logger/__init__.py", line 2, in <module>
        from .meterlogger import MeterLogger
      File "/usr/local/lib/python3.6/site-packages/torchnet/logger/meterlogger.py", line 16
        self.nclass = nclass
                           ^
    TabError: inconsistent use of tabs and spaces in indentation
    
    opened by TuXiaokang 6
  • Add Visdom logging to TNT

    Add Visdom logging to TNT

    Added the ability to log to Visdom (like Tensorboard, but better!). It is a port of this repo to TNT.

    screen shot 2017-08-03 at 3 27 10 pm

    This PR adds TNT support for the existing Visdom plots and includes an example that uses it for MNIST (above).

    opened by alexsax 6
  • how to use conda install torchnet?

    how to use conda install torchnet?

    In my ubuntu sever, pip is ok, but torchnet is only in 'pip list' and not in 'conda list', so when i run xx.py, error is no module named 'torchnet'. So i want to ask if i can use conda to install torchnet and how to install it? could anyone help me? thanks!

    opened by qilong-zhang 5
  • Replace loss[0] with loss.item() due to deprecation

    Replace loss[0] with loss.item() due to deprecation

    When using tnt's meterlogger a deprecation warning by PyTorch does appear:

    UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.
    5. Use tensor.item() to convert a 0-dim tensor to a Python number
    

    Issued by this line.

    Replacing loss[0] with loss.item() should fix that without any further consequences

    opened by sauercrowd 5
  • Generic tnt.Engine?

    Generic tnt.Engine?

    Shouldn't the tnt.engine.Engine be changed to tnt.engine.SGDEngine and tnt.engine.Engine be a generic engine?

    This is similar to torchnet which allowed extending engines to make meta-engines like train_val_engine.

    opened by karandwivedi42 5
  • Update LRScheduler instance checks

    Update LRScheduler instance checks

    Summary: After https://github.com/pytorch/pytorch/pull/88503 , these isinstance checks no longer pass. Example: https://github.com/pytorch/tnt/actions/runs/3434539858/jobs/5725945075

    Differential Revision: D41177335

    cla signed fb-exported 
    opened by ananthsub 4
  • Create torchtnt.utils.lr_scheduler.TLRScheduler

    Create torchtnt.utils.lr_scheduler.TLRScheduler

    Summary:

    Introduce torchtnt.utils.lr_scheduler.TLRScheduler to manage compatibility of torch with expose of LRScheduler https://github.com/pytorch/pytorch/pull/88503

    It seems that issue persist still with 1.13.1 (see #285). Replace the get_version logic with try/except. _LRscheduler.

    Fixes #285 https://github.com/pytorch/tnt/issues/285

    cla signed 
    opened by dmtrs 7
  • Issue with torch 1.13

    Issue with torch 1.13

    🐛 Describe the bug

    Can not import torchtnt.framework due to AttributeError.

    Traceback (most recent call last):
      File "/Users/foo/app/runner/trainer/__init__.py", line 4, in <module>
        import torchtnt.framework
      File "/Users/foo/Library/Caches/pypoetry/virtualenvs/sp-mcom8aNU-py3.9/lib/python3.9/site-packages/torchtnt/framework/__init__.py", line 7, in <module>
        from .auto_unit import AutoUnit
      File "/Users/foo/Library/Caches/pypoetry/virtualenvs/sp-mcom8aNU-py3.9/lib/python3.9/site-packages/torchtnt/framework/auto_unit.py", line 23, in <module>
        from torchtnt.framework.unit import EvalUnit, PredictUnit, TrainUnit
      File "/Users/foo/Library/Caches/pypoetry/virtualenvs/sp-mcom8aNU-py3.9/lib/python3.9/site-packages/torchtnt/framework/unit.py", line 24, in <module>
        TLRScheduler = torch.optim.lr_scheduler.LRScheduler
    AttributeError: module 'torch.optim.lr_scheduler' has no attribute 'LRScheduler'
    

    From torch documentation it does not seem to have a torch.optim.lr_scheduler in stable version. https://pytorch.org/docs/stable/optim.html. Please also see BC-breaking change after 1.10 that may affect optimizer and lr step.

    From requirements.txt it does not seem this is locked in particular torch version.

    What is current working supported torch version for torchtnt=0.0.4? Is there plans to have particular supported torch versions?

    Versions

    % poetry run python collect_env.py                                                                                                                                                                      ✹ ✭
    Collecting environment information...
    PyTorch version: 1.13.1
    Is debug build: False
    CUDA used to build PyTorch: None
    ROCM used to build PyTorch: N/A
    
    OS: macOS 10.14.6 (x86_64)
    GCC version: Could not collect
    Clang version: Could not collect
    CMake version: Could not collect
    Libc version: N/A
    
    Python version: 3.9.13 (main, Sep  3 2022, 22:36:35)  [Clang 10.0.1 (clang-1001.0.46.4)] (64-bit runtime)
    Python platform: macOS-10.14.6-x86_64-i386-64bit
    Is CUDA available: False
    CUDA runtime version: No CUDA
    CUDA_MODULE_LOADING set to: N/A
    GPU models and configuration: No CUDA
    Nvidia driver version: No CUDA
    cuDNN version: No CUDA
    HIP runtime version: N/A
    MIOpen runtime version: N/A
    Is XNNPACK available: True
    
    Versions of relevant libraries:
    [pip3] mypy-extensions==0.4.3
    [pip3] numpy==1.23.5
    [pip3] torch==1.13.1
    [pip3] torchtnt==0.0.4
    [conda] Could not collect
    
    opened by dmtrs 1
  • Support recreating dataloaders during loop

    Support recreating dataloaders during loop

    Summary: Sometimes users need to recreate the dataloaders at the start of the epoch during the overall training loop. To support this, we allow users to register a creation function when creating the state for training or fitting. We pass the state as an argument since users may want to use progress information such as the progress counters to reinitialize the dataloader.

    We don't add this support for evaluate or predict since those functions iterate through the corresponding dataloader just once.

    For fit, this allows flexibility to reload training & evaluation dataloaders independently during if desired

    Differential Revision: D40539580

    cla signed fb-exported 
    opened by ananthsub 3
Releases(0.0.5.1)
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022