Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

Related tags

Text Data & NLPtta
Overview

T-TA (Transformer-based Text Auto-encoder)

This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep Bidirectional Language Representations for Unsupervised Learning) using TensorFlow 2.

How to train T-TA using custom dataset

  1. Prepare datasets. You need text line files.

    Example:

    Sentence 1.
    Sentence 2.
    Sentence 3.
    
  2. Train the sentencepiece tokenizer. You can use the train_sentencepiece.py or train sentencepiece model by yourself.

  3. Train T-TA model. Run train.py with customizable arguments. Here's the usage.

    $ python train.py --help
    usage: train.py [-h] [--train-data TRAIN_DATA] [--dev-data DEV_DATA] [--model-config MODEL_CONFIG] [--batch-size BATCH_SIZE] [--spm-model SPM_MODEL]
                    [--learning-rate LEARNING_RATE] [--target-epoch TARGET_EPOCH] [--steps-per-epoch STEPS_PER_EPOCH] [--warmup-ratio WARMUP_RATIO]
    
    optional arguments:
        -h, --help            show this help message and exit
        --train-data TRAIN_DATA
        --dev-data DEV_DATA
        --model-config MODEL_CONFIG
        --batch-size BATCH_SIZE
        --spm-model SPM_MODEL
        --learning-rate LEARNING_RATE
        --target-epoch TARGET_EPOCH
        --steps-per-epoch STEPS_PER_EPOCH
        --warmup-ratio WARMUP_RATIO

    I want to train models until the designated steps, so I added the steps_per_epoch and target_epoch arguments. The total steps will be the steps_per_epoch * target_epoch.

  4. (Optional) Test your model using KorSTS data. I trained my model with the Korean corpus, so I tested it using KorSTS data. You can evaluate KorSTS score (Spearman correlation) using evaluate_unsupervised_korsts.py. Here's the usage.

    $ python evaluate_unsupervised_korsts.py --help
    usage: evaluate_unsupervised_korsts.py [-h] --model-weight MODEL_WEIGHT --dataset DATASET
    
    optional arguments:
        -h, --help            show this help message and exit
        --model-weight MODEL_WEIGHT
        --dataset DATASET
    $ # To evaluate on dev set
    $ # python evaluate_unsupervised_korsts.py --model-weight ./path/to/checkpoint --dataset ./path/to/dataset/sts-dev.tsv

Training details

  • Training data: lovit/namuwikitext
  • Peak learning rate: 1e-4
  • learning rate scheduler: Linear Warmup and Linear Decay.
  • Warmup ratio: 0.05 (warmup steps: 1M * 0.05 = 50k)
  • Vocab size: 15000
  • num layers: 3
  • intermediate size: 2048
  • hidden size: 512
  • attention heads: 8
  • activation function: gelu
  • max sequence length: 128
  • tokenizer: sentencepiece
  • Total steps: 1M
  • Final validation accuracy of auto encoding task (ignores padding): 0.5513
  • Final validation loss: 2.1691

Unsupervised KorSTS

Model Params development test
My Implementation 17M 65.98 56.75
- - - -
Korean SRoBERTa (base) 111M 63.34 48.96
Korean SRoBERTa (large) 338M 60.15 51.35
SXLM-R (base) 270M 64.27 45.05
SXLM-R (large) 550M 55.00 39.92
Korean fastText - - 47.96

KorSTS development and test set scores (100 * Spearman Correlation). You can check the details of other models on this paper (KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding).

How to use pre-trained weight using tensorflow-hub

>>> import tensorflow as tf
>>> import tensorflow_text as text
>>> import tensorflow_hub as hub
>>> # load model
>>> model = hub.KerasLayer("https://github.com/jeongukjae/tta/releases/download/0/model.tar.gz")
>>> preprocess = hub.KerasLayer("https://github.com/jeongukjae/tta/releases/download/0/preprocess.tar.gz")
>>> # inference
>>> input_tensor = preprocess(["이 모델은 나무위키로 학습되었습니다.", "근데 이 모델 어디다가 쓸 수 있을까요?", "나는 고양이를 좋아해!", "나는 강아지를 좋아해!"])
>>> representation = model(input_tensor)
>>> representation = tf.reduce_sum(representation * tf.cast(input_tensor["input_mask"], representation.dtype)[:, :, tf.newaxis], axis=1)
>>> representation = tf.nn.l2_normalize(representation, axis=-1)
>>> similarities = tf.tensordot(representation, representation, axes=[[1], [1]])
>>> # results
>>> similarities
<tf.Tensor: shape=(4, 4), dtype=float32, numpy=
array([[0.9999999 , 0.76468784, 0.7384633 , 0.7181306 ],
       [0.76468784, 1.        , 0.81387675, 0.79722893],
       [0.7384633 , 0.81387675, 0.9999999 , 0.96217746],
       [0.7181306 , 0.79722893, 0.96217746, 1.        ]], dtype=float32)>

References


짧은 영어를 뒤로 하고, 대부분의 독자분이실 한국분들을 위해 적어보자면, 단순히 "회사에서 구상중인 모델 구조가 좋을까?"를 테스트해보기 위해 개인적으로 학습해본 모델입니다. 어느정도로 잘 나오는지 궁금해서 작성한 코드이기 때문에 하이퍼 파라미터 튜닝이라던가, 데이터셋을 신중히 골랐다던가 하는 것은 없었습니다. 단지 학습해보다보니 생각보다 값이 잘 나와서 결과와 함께 공개하게 되었습니다. 커밋 로그를 보시면 짐작하실 수 있겠지만, 하루 정도에 후다닥 짜서 작은 GPU로 약 50시간 가량 돌린 모델입니다.

원 논문에 나온 값들을 최대한 따라가려 했으며, 밤에 작성했던 코드라 조금 명확하지 않은 부분이 있을 수도 있고, 원 구현과 다를 수도 있습니다. 해당 부분은 이슈로 달아주신다면 다시 확인해보겠습니다.

트러블 슈팅에 도움을 주신 백영민님(@baekyeongmin)께 감사드립니다.

You might also like...
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration

Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text

Making text a first-class citizen in TensorFlow.
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow.  This is part of the CASL project: http://casl-project.ai/
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

Releases(0)
  • 0(Feb 6, 2021)

    • Training data: lovit/namuwikitext
    • Peak learning rate: 1e-4
    • learning rate scheduler: Linear Warmup and Linear Decay.
    • Warmup ratio: 0.05 (warmup steps: 1M * 0.05 = 50k)
    • Vocab size: 15000
    • num layers: 3
    • intermediate size: 2048
    • hidden size: 512
    • attention heads: 8
    • activation function: gelu
    • max sequence length: 128
    • tokenizer: sentencepiece
    • Total steps: 1M
    • Final validation accuracy of auto encoding task (ignores padding): 0.5513
    • Final validation loss: 2.1691
    Source code(tar.gz)
    Source code(zip)
    model.tar.gz(60.93 MB)
    preprocess.tar.gz(507.45 KB)
Owner
Jeong Ukjae
Machine Learning Engineer
Jeong Ukjae
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 86 Dec 28, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode

Patrick von Platen 9 Jul 21, 2022
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022