DIRL: Domain-Invariant Representation Learning

Overview

DIRL: Domain-Invariant Representation Learning

Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the marginal and the conditional distributions across source and target enviroments. For more details, please visit: https://www.sites.google.com/view/dirl

            

dann_conceptual       [Source Only]      [Marginal Alignment Cross-Label Mismatch]      [Marginal Alignment Label Shift]      [DIRL]

Getting Started

Follow the instructions to get started after cloning the repository (tested with python3):

virtualenv --python=/usr/bin/python3 env_dirl
source env_dirl/bin/activate

pip install -r requirements.txt
python setup.py develop

Examples

Below we provide a couple of examples to illustrate the efficiency of the DIRL algorithm in learning invariant feature representations with unseen out of training distribution target environments. Customize your results by adjusting the settings and hyperparameters in the respective config files in the configs folder.

2D Synthetic Domain

CUDA_VISIBLE_DEVICES=0 python src/train_synthetic_2d.py -mode dirl -num_target_labels 4 

Results are saved in the results folder with respective .yml config, results/figs and results/animations folder.

Vary the number of target examples num_target_examples and -mode among [source_only, dann, triplet, dirl] to analyse the performance of the algorithm.

Digits Bechmarks

First, download the digits datasets (required only once) in the resources folder by executing the script: python src/download_digits_datasets.py

CUDA_VISIBLE_DEVICES=1 python src/train_digits.py -mode dirl -source mnist -target mnistm -num_target_labels 10 -save_results True

Results are saved in results folder with the respective .yml config.

Vary the -source and -target options among [mnist, mnistm, svhn, usps].

-mode and -num_target_labels can be changed similarly as above.

Cite DIRL

@inproceedings{Tanwani_DIRL_CORL_20,
    title={Domain Invariant Representation Learning for Sim-to-Real Transfer},
    author={Ajay Kumar Tanwani},
    booktitle={Proceedings of the 4th Conference on Robot Learning},
    year={2020}
}
Owner
Ajay Tanwani
Ajay Tanwani
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022