Few-shot Natural Language Generation for Task-Oriented Dialog

Related tags

Text Data & NLPSC-GPT
Overview

Few-shot Natural Language Generation for Task-Oriented Dialog

This repository contains the dataset, source code and trained model for the following paper:

Few-shot Natural Language Generation for Task-Oriented Dialog Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng and Jianfeng Gao

ArXiv paper: https://arxiv.org/abs/2002.12328

This repository is based on hugginface transformer package and OpenAI GPT-2, containing model training code and pretrained medium model checkpoint. Some evaluation scripts are adapted from RNNLG. The results indicate that with minimal training examples, SC-GPT is able to generate natural language response given dialog acts naturally and adequately. It can be used to train an NLG model in new domains with very limited examples.

The include scripts can be used to reproduce the results reported in the paper.

Project and demo webpage: https://aka.ms/scgpt

Dataset: FewShotWoz

FewShotWoz is constructed using dataset from RNNLG and MultiWoz.

Data files includes

{domain}/train.json: training set in json format used for evaluation, other package like RNNLG also need this format. {domain}/train.txt: linearized training set for GPT-2 models. {domain}/test.json: testing set in json format. {domain}/test.txt: linearized testing set for GPT-2 models.

Data format

[
"inform(name='hakka restaurant';pricerange=moderate)", 
"hakka restaurant is moderate -ly priced", 
"hakka restaurant is moderate -ly priced" 
]

First item: dialog act
Second item: corresponding natural language description
Thrid item: repeated for evaluation script

Linearized as:
inform ( name = hakka restaurant ; pricerange = moderate ) & hakka restaurant is moderate -ly priced

Pipeline

The code is still under cleanup. More details of code usage will be added soon

Setup

Please use the below command to clone and install the requirements.

git clone https://github.com/pengbaolin/SC-GPT.git
cd SC-GPT
pip install -r requirements.txt

Fetch and unzip the checkpoint

wget https://bapengstorage.blob.core.windows.net/fileshare/scgpt.tar.gz
tar -xvf scgpt.tar.gz

Training

export CUDA_VISIBLE_DEVICES=0
python train.py --output_dir=MODEL_SAVE_PATH --model_type=gpt2 --model_name_or_path=PRE_TRINED_MODEL_PATH --do_train --do_eval --eval_data_file=data/restaurant/train.txt --per_gpu_train_batch_size 1 --num_train_epochs EPOCH --learning_rate LR --overwrite_cache --use_tokenize --train_data_file=data/restaurant/train.txt --overwrite_output_dir

MODEL_SAVE_PATH : Path of the saving model .

PRE_TRAINED_MODEL_PATH : Initial checkpoint; Could start from gpt2, gpt2-meidum or our provided scgpt folder.

EPOCH : Number of training epochs; 5 is enough for a reasonable performance

LR : Learning rate; 5e-5, 1e-5, or 1e-4

Decoding

export CUDA_VISIBLE_DEVICES=0
python generate.py --model_type=gpt2 --model_name_or_path=MODEL_SAVE_PATH --num_samples 5 --input_file=data/restaurant/test.txt --top_k 5 --output_file=results.json --length 80

Evaluate

python evaluator.py --domain restaurant results.json

script for attraction/train/taxi will be provided soon

Interact

python interact.py --model_type=gpt2 --model_name_or_path=MODEL_SAVE_PATH --length 50 --num_samples 5

Try our demo

The live demo is at https://aka.ms/scgpt. Please refer the examples on top to input dialog acts.

Disclaimer

This repository aims to facilitate research in large-scale pretraining for NLG in the context of dialog systems. This toolkit contains only part of the modeling machinery needed to actually produce a model weight file in a running dialog. On its own, this model provides only information about the weights of various text spans; in order for a researcher to actually use it, they will need to bring conversational data of their own and decode the response generation from the pretrained system. Microsoft is not responsible for any generation from the 3rd party utilization of the pretrained system.

Citation

if you use this code and data in your research, please cite our arxiv paper:

@misc{peng2020scgpt,
      title={Few-shot Natural Language Generation for Task-Oriented Dialog},
      author={Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng, Jianfeng Gao},
      archivePrefix={arXiv},
      year={2020},
      eprint={2002.12328},
      primaryClass={cs.CL}
}
vits chinese, tts chinese, tts mandarin

vits chinese, tts chinese, tts mandarin 史上训练最简单,音质最好的语音合成系统

AmorTX 12 Dec 14, 2022
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
Converts python code into c++ by using OpenAI CODEX.

🦾 codex_py2cpp 🤖 OpenAI Codex Python to C++ Code Generator Your Python Code is too slow? 🐌 You want to speed it up but forgot how to code in C++? ⌨

Alexander 423 Jan 01, 2023
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022