Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Overview

Rank-One Model Editing (ROME)

This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only). We currently support OpenAI's GPT-2 XL (1.5B) and EleutherAI's GPT-J (6B). The release of a 20B GPT-like model from EleutherAI is expected soon; we hope to support it ASAP.

Feel free to open an issue if you find any problems; we are actively developing this repository and will monitor tickets closely.

Colab ROME Demo

causal tracing GIF

Table of Contents

  1. Installation
  2. Causal Tracing
  3. Rank-One Model Editing (ROME)
  4. CounterFact Dataset
  5. Evaluation
  6. How to Cite

Installation

We recommend conda for managing Python, CUDA, and PyTorch-related dependencies, and pip for everything else. To get started, simply install conda and run:

./scripts/setup_conda.sh

Causal Tracing

notebooks/causal_trace.ipynb demonstrates Causal Tracing, which can be modified to apply tracing to the processing of any statement.

causal tracing GIF

Rank-One Model Editing (ROME)

notebooks/rome.ipynb demonstrates ROME. The API is simple; one simply has to specify a requested rewrite of the following form:

request = {
    "prompt": "{} plays the sport of",
    "subject": "LeBron James",
    "target_new": {
        "str": "football"
    }
}

Several similar examples are included in the notebook.

CounterFact

Description coming soon!

Evaluation

Paper Baselines

We compare ROME against several state-of-the-art model editors. All are implemented in baselines/ in their respective folders. Implementations are not our own; they are adapted slightly to plug into our evaluation system.

Running the Full Evaluation Suite

Description coming soon!

How to Cite

@article{meng2022locating,
  title={Locating and Editing Factual Knowledge in GPT},
  author={Kevin Meng and David Bau and Alex Andonian and Yonatan Belinkov},
  journal={arXiv preprint arXiv:2202.05262},
  year={2022}
}
Owner
Kevin Meng
MIT ugrad interested in interpretability and its applications to NLP, bioinformatics, and robotics.
Kevin Meng
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Text preprocessing, representation and visualization from zero to hero.

Text preprocessing, representation and visualization from zero to hero. From zero to hero • Installation • Getting Started • Examples • API • FAQ • Co

Jonathan Besomi 2.7k Jan 08, 2023
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Snips 3.7k Dec 30, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022