Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

Overview

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition

[ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

and

SeqNetVLAD vs PointNetVLAD: Image Sequence vs 3D Point Clouds for Day-Night Place Recognition

[ArXiv] [CVPR 2021 Workshop 3DVR]


Sequence-Based Hierarchical Visual Place Recognition.

News:

Jun 23: CVPR 2021 Workshop 3DVR paper, "SeqNetVLAD vs PointNetVLAD", now available on arXiv. Oxford dataset to be released soon.

Jun 02: SeqNet code release with the Nordland dataset.

Setup (One time)

Conda

conda create -n seqnet python=3.8 mamba -c conda-forge -y
conda activate seqnet
mamba install numpy pytorch=1.8.0 torchvision tqdm scikit-learn faiss tensorboardx h5py -c conda-forge -y

Download

Run bash download.sh to download single image NetVLAD descriptors (3.4 GB) for the Nordland-clean dataset [a] and corresponding model files (1.5 GB) [b].

Run

Train

To train sequential descriptors through SeqNet:

python main.py --mode train --pooling seqnet --dataset nordland-sw --seqL 10 --w 5 --outDims 4096 --expName "w5"

To (re-)train single descriptors through SeqNet:

python main.py --mode train --pooling seqnet --dataset nordland-sw --seqL 1 --w 1 --outDims 4096 --expName "w1"

Test

python main.py --mode test --pooling seqnet --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-22-44_l10_w5/ 

The above will reproduce results for SeqNet (S5) as per Supp. Table III on Page 10.

To obtain other results from the same table, expand this.
# Raw Single (NetVLAD) Descriptor
python main.py --mode test --pooling single --dataset nordland-sf --seqL 1 --split test

# SeqNet (S1)
python main.py --mode test --pooling seqnet --dataset nordland-sf --seqL 1 --split test --resume ./data/runs/Jun03_15-07-46_l1_w1/

# Raw + Smoothing
python main.py --mode test --pooling smooth --dataset nordland-sf --seqL 5 --split test

# Raw + Delta
python main.py --mode test --pooling delta --dataset nordland-sf --seqL 5 --split test

# Raw + SeqMatch
python main.py --mode test --pooling single+seqmatch --dataset nordland-sf --seqL 5 --split test

# SeqNet (S1) + SeqMatch
python main.py --mode test --pooling s1+seqmatch --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-07-46_l1_w1/

# HVPR (S5 to S1)
# Run S5 first and save its predictions by specifying `resultsPath`
python main.py --mode test --pooling seqnet --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-22-44_l10_w5/ --resultsPath ./data/results/
# Now run S1 + SeqMatch using results from above (the timestamp of `predictionsFile` would be different in your case)
python main.py --mode test --pooling s1+seqmatch --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-07-46_l1_w1/ --predictionsFile ./data/results/Jun03_16-07-36_l5_0.npz

Acknowledgement

The code in this repository is based on Nanne/pytorch-NetVlad. Thanks to Tobias Fischer for his contributions to this code during the development of our project QVPR/Patch-NetVLAD.

Citation

@article{garg2021seqnet,
  title={SeqNet: Learning Descriptors for Sequence-based Hierarchical Place Recognition},
  author={Garg, Sourav and Milford, Michael},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={3},
  pages={4305-4312},
  year={2021},
  publisher={IEEE},
  doi={10.1109/LRA.2021.3067633}
}

@misc{garg2021seqnetvlad,
  title={SeqNetVLAD vs PointNetVLAD: Image Sequence vs 3D Point Clouds for Day-Night Place Recognition},
  author={Garg, Sourav and Milford, Michael},
  howpublished={CVPR 2021 Workshop on 3D Vision and Robotics (3DVR)},
  month={Jun},
  year={2021},
}

Other Related Projects

Patch-NetVLAD (2021); Delta Descriptors (2020); CoarseHash (2020); seq2single (2019); LoST (2018)

[a] This is the clean version of the dataset that excludes images from the tunnels and red lights, exact image names can be obtained from here.

[b] These will automatically save to ./data/, you can modify this path in download.sh and get_datasets.py to specify your workdir.

Owner
Sourav Garg
Sourav Garg
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022