Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

Overview

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition

[ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

and

SeqNetVLAD vs PointNetVLAD: Image Sequence vs 3D Point Clouds for Day-Night Place Recognition

[ArXiv] [CVPR 2021 Workshop 3DVR]


Sequence-Based Hierarchical Visual Place Recognition.

News:

Jun 23: CVPR 2021 Workshop 3DVR paper, "SeqNetVLAD vs PointNetVLAD", now available on arXiv. Oxford dataset to be released soon.

Jun 02: SeqNet code release with the Nordland dataset.

Setup (One time)

Conda

conda create -n seqnet python=3.8 mamba -c conda-forge -y
conda activate seqnet
mamba install numpy pytorch=1.8.0 torchvision tqdm scikit-learn faiss tensorboardx h5py -c conda-forge -y

Download

Run bash download.sh to download single image NetVLAD descriptors (3.4 GB) for the Nordland-clean dataset [a] and corresponding model files (1.5 GB) [b].

Run

Train

To train sequential descriptors through SeqNet:

python main.py --mode train --pooling seqnet --dataset nordland-sw --seqL 10 --w 5 --outDims 4096 --expName "w5"

To (re-)train single descriptors through SeqNet:

python main.py --mode train --pooling seqnet --dataset nordland-sw --seqL 1 --w 1 --outDims 4096 --expName "w1"

Test

python main.py --mode test --pooling seqnet --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-22-44_l10_w5/ 

The above will reproduce results for SeqNet (S5) as per Supp. Table III on Page 10.

To obtain other results from the same table, expand this.
# Raw Single (NetVLAD) Descriptor
python main.py --mode test --pooling single --dataset nordland-sf --seqL 1 --split test

# SeqNet (S1)
python main.py --mode test --pooling seqnet --dataset nordland-sf --seqL 1 --split test --resume ./data/runs/Jun03_15-07-46_l1_w1/

# Raw + Smoothing
python main.py --mode test --pooling smooth --dataset nordland-sf --seqL 5 --split test

# Raw + Delta
python main.py --mode test --pooling delta --dataset nordland-sf --seqL 5 --split test

# Raw + SeqMatch
python main.py --mode test --pooling single+seqmatch --dataset nordland-sf --seqL 5 --split test

# SeqNet (S1) + SeqMatch
python main.py --mode test --pooling s1+seqmatch --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-07-46_l1_w1/

# HVPR (S5 to S1)
# Run S5 first and save its predictions by specifying `resultsPath`
python main.py --mode test --pooling seqnet --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-22-44_l10_w5/ --resultsPath ./data/results/
# Now run S1 + SeqMatch using results from above (the timestamp of `predictionsFile` would be different in your case)
python main.py --mode test --pooling s1+seqmatch --dataset nordland-sf --seqL 5 --split test --resume ./data/runs/Jun03_15-07-46_l1_w1/ --predictionsFile ./data/results/Jun03_16-07-36_l5_0.npz

Acknowledgement

The code in this repository is based on Nanne/pytorch-NetVlad. Thanks to Tobias Fischer for his contributions to this code during the development of our project QVPR/Patch-NetVLAD.

Citation

@article{garg2021seqnet,
  title={SeqNet: Learning Descriptors for Sequence-based Hierarchical Place Recognition},
  author={Garg, Sourav and Milford, Michael},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={3},
  pages={4305-4312},
  year={2021},
  publisher={IEEE},
  doi={10.1109/LRA.2021.3067633}
}

@misc{garg2021seqnetvlad,
  title={SeqNetVLAD vs PointNetVLAD: Image Sequence vs 3D Point Clouds for Day-Night Place Recognition},
  author={Garg, Sourav and Milford, Michael},
  howpublished={CVPR 2021 Workshop on 3D Vision and Robotics (3DVR)},
  month={Jun},
  year={2021},
}

Other Related Projects

Patch-NetVLAD (2021); Delta Descriptors (2020); CoarseHash (2020); seq2single (2019); LoST (2018)

[a] This is the clean version of the dataset that excludes images from the tunnels and red lights, exact image names can be obtained from here.

[b] These will automatically save to ./data/, you can modify this path in download.sh and get_datasets.py to specify your workdir.

Owner
Sourav Garg
Sourav Garg
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022