Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

Overview

CoulombGas

Build Status

This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX, it utilizes (both forward- and backwark-mode) automatic differentiation and the pmap mechanism to achieve a large-scale single-program multiple-data (SPMD) training on multiple GPUs.

Requirements

  • JAX with Nvidia GPU support
  • A handful of GPUs. The more the better :P
  • haiku
  • optax
  • To analytically computing the thermal entropy of a non-interacting Fermi gas in the canonical ensemble based on arbitrary-precision arithmetic, we have used the python library mpmath.

Demo run

To start, try running the following commands to launch a training of 13 spin-polarized electrons in 2D with the dimensionless density parameter 10.0 and (reduced) temperature 0.15 on 8 GPUs:

export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python main.py --n 13 --dim 2 --rs 10.0 --Theta 0.15 --Emax 25 --sr --batch 4096 --num_devices 8 --acc_steps 2

Note that we effectively sample a batch of totally 8192 samples in each training step. However, such a batch size will result in too large a memory consumption to be accommodated by 8 GPUs. To overcome this problem, we choose to split the batch into two equal pieces, and accumulate the gradient and various observables for each piece in two sequential substeps. In other words, the argument batch in the command above actually stands for the batch per accumulation step.

If you have only, say, 4 GPUs, you can set batch, num_devices, acc_steps to be 2048, 4 and 4 respectively to launch the same training process, at the expense of doubling the running time. The GPU hours are nevertheless the same.

For the detail meaning of other command line arguments, run

python main.py --help

or directly refer to the source code.

Trained model and data

A training process from complete scratch actually contains two stages. In the first stage, a variational autoregressive network is pretrained to approximate the Boltzmann distribution of the corresponding non-interacting electron gas. The resulting model can be saved and then loaded later. In fact, we have provided such a model file for the parameter settings of the last section for your convenience, so you can quickly get a feeling of the second stage of training the truly interacting system of our interest. We encourage you to remove the file to pretrain the model by yourself; it is actually much faster than the training in the second stage.

To facilitate further developments, we also provide the training models and logged data for various calculations in the paper, which are located in the data directory.

To cite

arxiv

Owner
FermiFlow
ab-initio study of fermions at finite temperature
FermiFlow
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022