NLP, Machine learning

Overview

Netflix-recommendation-system

NLP, Machine learning

Visual Studio Code

About


Recommendation algorithms are at the core of the Netflix product. It provides their members with personalized suggestions to reduce the amount of time and frustration to find something great content to watch. Because of the importance of our recommendations, they continually seek to improve them by advancing the state-of-the-art in the field. They do this by using the data about what content our members watch and enjoy along with how they interact with our service to get better at figuring out what the next great movie or TV show for them will be.

Types


The categories under "Trending Now" and "New Releases" are Non-Personalized Recommendation System
The categories under "Because you watched" are Personalized Recommendation System

Visual Studio Code

NLP


Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.

Visual Studio Code

#1 Tokenization


Tokenization is the process of breaking down sentence or paragraphs into smaller chunks of words called tokens.

#2 Stop Words Removal


On removal of some words, the meaning of the sentence doesn't change, like and, am. Those words are called stop-words and should be removed before feeding to any algorithm. In datasets, some non-stop words repeat very frequently. Those words too should be removed to get an unbiased result from the algorithm.

#3 Vectorization


After tokenization, and stop words removal, our "content" are still in string format. We need to convert those strings to numbers based on their importance (features). We use TF-IDF vectorization to convert those text to vector of importance. With TF-IDF we can extract important words in our data. It assign rarely occurring words a high number, and frequently occurring words a very low number.

Owner
Harshith VH
Student at Dayananda Sagar College of Engineering, Bangalore
Harshith VH
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers an

Parv Bhatt 1 Jan 01, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
COVID-19 Chatbot with Rasa 2.0: open source conversational AI

COVID-19 chatbot implementation with Rasa open source 2.0, conversational AI framework.

Aazim Parwaz 1 Dec 23, 2022
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
Repository for the paper "Optimal Subarchitecture Extraction for BERT"

Bort Companion code for the paper "Optimal Subarchitecture Extraction for BERT." Bort is an optimal subset of architectural parameters for the BERT ar

Alexa 461 Nov 21, 2022
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.

Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ

Khaled Tofailieh 3 Dec 06, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022