Course material for the Multi-agents and computer graphics course

Overview

TC2008B

Course material for the Multi-agents and computer graphics course.

Setup instructions

  • Strongly recommend using a custom conda environment.
  • Install python 3.8 in the environment: conda install python=3.8 Using 3.8 for compatibility reasons. Maybe 3.9 or 3.10 are compatible with all the packages, but will have to check.
  • Installing mesa: pip install mesa
  • Installing flask to mount the service: pip install flask
  • By this moment, the environment will have all the packages needed for the project to run.

Instructions to run the local server and the Unity application

  • Run either the python web server: Server/tc2008B_server.py, or the flask server: Server/tc2008B_flask.py. Flask is considerably easier to setup and use, and I strongly recommend its use over python's http.server module. Additionally, IBM cloud example used flask.
  • To run the python web server:
python tc2008B_server.py
  • To run a flask app:
export FLASK_APP=tc_2008B_flash.py
flask run
  • You can change the name of the app you want to run by changing the environment variable FLASK_APP.

  • Alternatively, if you used the following code in your flask server:

if __name__=='__main__':
    app.run(host="localhost", port=8585, debug=True)

you can run it using:

python tc2008B_flask.py
  • To run a flask app on a different host or port:
flask run --host=0.0.0.0 --port=8585
  • Either of these servers is what will run on the cloud.
  • Once the server is running, launch the Unity scene TC2008B that is in the folder: IntegrationTest.
  • The scene has two game objects: AgentController and AgentControllerUpdate. I left both so that different functionality can be tested: AgentController works with the response of the python web server, while AgentControllerUpdate works with the reponse from the flask server.
  • I updated the AgentController.cs code, and introduced AgentControllerUpdate.cs. Each script parses data differently, depending on the response from either the python web server, or from the flask server. The AgentController.cs script parses text data, while AgentControllerUpdate.cs parses JSON data. I strongly recommend that we use JSON data.
  • The scripts are listening to port 8585 (http://localhost:8585). Double check that your server is launching on that port; specially if you are using a flask server.
  • If the Unity application is not running, or has import issues, I included the Unity package that has the scene Sergio Ruiz provided.

Instruction to run the cloud server and Unity application

Installing dependencies, and locally running the sample

# ...first add the Cloud Foundry Foundation public key and package repository to your system
wget -q -O - https://packages.cloudfoundry.org/debian/cli.cloudfoundry.org.key | sudo apt-key add -
echo "deb https://packages.cloudfoundry.org/debian stable main" | sudo tee /etc/apt/sources.list.d/cloudfoundry-cli.list
# ...then, update your local package index, then finally install the cf CLI
sudo apt update
sudo apt install cf8-cli
  • To get the sample app running:
git clone https://github.com/IBM-Cloud/get-started-python
cd get-started-python
  • To run locally:
pip install -r requirements.txt
python hello.py

To deply the sample to the cloud

  • All the requiered files for the sample app to run are inside the IBMCloud folder.
  • We first need a manifest.yml file. The one provided in the example repository contains the following:
applications:
 - name: GetStartedPython
   random-route: true
   memory: 128M
  • You can use the Cloud Foundry CLI to deploy apps. Choose your API endpoint:
cf api 
   

   

Replace the API-endpoint in the command with an API endpoint from the following list:

URL Region
https://api.ng.bluemix.net US South
https://api.eu-de.bluemix.net Germany
https://api.eu-gb.bluemix.net United Kingdom
https://api.au-syd.bluemix.net Sydney
  • Login to your IBM Cloud account:
cf login
  • From within the get-started-python directory push your app to IBM Cloud:
cf push
  • This process can take a while. All the dependencies are downloaded and installed, and the app in started.
  • After you push the application, in the cloud dashboard you can see a new cloud foundry app.
  • This can take a minute. If there is an error in the deployment process you can use the command cf logs --recent to troubleshoot.
  • When deployment completes you should see a message indicating that your app is running. View your app at the URL listed in the output of the push command. You can also issue the cf apps.
  • With the cf apps command you can see the route for the app.

To deploy a custom app to the cloud

  • I created an app within the cloud foundry in the ibm cloud by following the document Manual IBM Cloud - Python.pdf.
  • Created an additional folder inside the IBMCloud folder, named boids, that contains the required files.
  • In the manifest.yml I renamed the name to the one I used for the app in cloud foundry. From GetStartedPython to Boids.
  • Then, modified the ProcFile file as follows:
web: python tc2008B_flask.py
  • Modified the setup.py file, but I do not think it matters.
  • Then changed to the boids folder, and used:
cf push
  • Then, update the url for the service in Unity with the url for the service that cloud foundry assigns.

Notes

  • Using VSCode to develop everything.
  • Although not stated in the requirements, Git needs to be installed on the system.
  • I am running windows, and using the WSL. I ran the server code in WSL, and the Unity client in windows. My WSL machine runs Ubuntu 20.
  • Using Thunder Client extension as a replacement for postman to test the apis.
  • Pip does not allow us to search anymore.
  • As of 2021-10-17, the WWWForm method to post from Unity to the web service still works with Unity 20.20.3.4. However, the support apparently is going away soon.
  • Using flask because it is ideal for building smaller applications. Django could be used, but since it is much more robust, the additional utilities were not needed for this project.
  • The demo app push process went rather smoothly, but for the boids app it did not. It took too long, and ended up failing with a timeout error. I issued the command again.
  • Timeout again. Modified the manifest, and tried again.
  • After that, the app failed when it tried to start. Apparently, numpy was missing from the requirements.

TO DO

  • [ x ] Add the mesa code instead of the Boids code.
  • [ x ] Check synchronization, clients, maybe in the cloud, most likely in flask
  • Check cloud documentation or ask for a course? Instances, connections, etc.

Dependencies

Textboxes implementation with Tensorflow (python)

tb_tensorflow A python implementation of TextBoxes Dependencies TensorFlow r1.0 OpenCV2 Code from Chaoyue Wang 03/09/2017 Update: 1.Debugging optimize

Jayne Shin (신재인) 20 May 31, 2019
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
This is a real life mario project using python and mediapipe

real-life-mario This is a real life mario project using python and mediapipe How to run to run this just run - realMario.py file requirements This req

Programminghut 42 Dec 22, 2022
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
OCR, Object Detection, Number Plate, Real Time

README.md PrePareded anaconda env requirements.txt clova AI → deep text recognition → trained weights (ex, .pth) wpod-net weights (ex, .h5 , .json) ht

Kaven Lee 7 Dec 06, 2022
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
APS 6º Semestre - UNIP (2021)

UNIP - Universidade Paulista Ciência da Computação (CC) DESENVOLVIMENTO DE UM SISTEMA COMPUTACIONAL PARA ANÁLISE E CLASSIFICAÇÃO DE FORMAS Link do git

Eduardo Talarico 5 Mar 09, 2022
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Subramanyam 76 Dec 06, 2022
GDB python tool to pretty print and debug c++ xtensor containers

gdb_xt2np GDB python tool to pretty print, examine, and debug c++ Xtensor containers. Xtensor is a c++ library for scientific computing using multidim

Christopher Burke 4 Oct 29, 2021
Slice a single image into multiple pieces and create a dataset from them

OpenCV Image to Dataset Converter Slice a single image of Persian digits into mu

Meysam Parvizi 14 Dec 29, 2022
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a

27.5k Jan 08, 2023
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. This is the official Roboflow python package that interfaces with the Roboflow API.

Roboflow 52 Dec 23, 2022
Create single line SVG illustrations from your pictures

Create single line SVG illustrations from your pictures

Javier Bórquez 686 Dec 26, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Li Siyao 237 Dec 29, 2022
pulse2percept: A Python-based simulation framework for bionic vision

pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati

67 Dec 29, 2022