Captcha Recognition

Overview

Captcha Recognition

Problem Definition

CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) is an automated test created to prevent websites from being repeatedly accessed by an automatic program in a short period of time and wasting network resources. Among all the CAPTCHAs, commonly used types contain low resolution, deformed characters with character adhesions and background noise, which the user must read and type correctly into an input box. This is a relatively simple task for humans, taking an average of 10 seconds to solve, but it presents a difficulty for computers, because such noise makes it difficult for a program to differentiate the characters from them. The main objective of this project is to recognize the target numbers in the captcha images correctly.

The mainstream CAPTCHA is based on visual representation, including images such as letters and text. Traditional CAPTCHA recognition includes three steps: image pre-processing, character segmentation, and character recognition. Traditional methods have generalization capabilities and robustness for different types of CAPTCHA. The stickiness is poor. As a kind of deep neural network, convolutional neural network has shown excellent performance in the field of image recognition, and it is much better than traditional machine learning methods. Compared with traditional methods, the main advantage of CNN lies in the convolutional layer in which the extracted image features have strong expressive ability, avoiding the problems of data pre-processing and artificial design features in traditional recognition technology. Although CNN has achieved certain results, the recognition effect of complex CAPTCHA is insufficient

Dataset

The dataset contains CAPTCHA images. The images are 5 letter words, and have noise applied (blur and a line). They are of size 200 x 50. The file name is same as the image letters.
Link for the dataset: https://www.kaggle.com/fournierp/captcha-version-2-images

image

Image Pre-Processing

Three transformations have been applied to the data:

  1. Adaptive Thresholding
  2. Morphological transformations
  3. Gaussian blurring

Adaptive Thresholding

Thresholding is the process of converting a grayscale image to a binary image (an image that contains only black and white pixels). This process is explained in the steps below: • A threshold value is determined according to the requirements (Say 128). • The pixels of the grayscale image with values greater than the threshold (>128) are replaced with pixels of maximum pixel value(255). • The pixels of the grayscale image with values lesser than the threshold (<128) are replaced with pixels of minimum pixel value(0). But this method doesn’t perform well on all images, especially when the image has different lighting conditions in different areas. In such cases, we go for adaptive thresholding. In adaptive thresholding the threshold value for each pixel is determined individually based on a small region around it. Thus we get different thresholds for different regions of the image and so this method performs well on images with varying illumination.

The steps involved in calculating the pixel value for each of the pixels in the thresholded image are as follows: • The threshold value T(x,y) is calculated by taking the mean of the blockSize×blockSize neighborhood of (x,y) and subtracting it by C (Constant subtracted from the mean or weighted mean). • Then depending on the threshold type passed, either one of the following operations in the below image is performed:

image

OpenCV provides us the adaptive threshold function to perform adaptive thresholding : Thres_img=cv.adaptiveThreshold ( src, maxValue, adaptiveMethod, thresholdType, blockSize, C) Image after applying adaptive thresholding :

image

Morphological Transformations

Morphological transformations are some simple operations based on the image shape. It is normally performed on binary images. Two basic morphological operators are Erosion and Dilation. Then its variant forms like Opening, Closing, Gradient etc also comes into play. For this project I have used its variant form closing, closing is a dilation followed by an erosion. As the name suggests, a closing is used to close holes inside of objects or for connecting components together. An erosion in an image “erodes” the foreground object and makes it smaller. A foreground pixel in the input image will be kept only if all pixels inside the structuring element are > 0. Otherwise, the pixels are set to 0 (i.e., background). Erosion is useful for removing small blobs in an image or disconnecting two connected objects. The opposite of an erosion is a dilation. Just like an erosion will eat away at the foreground pixels, a dilation will grow the foreground pixels. Dilations increase the size of foreground objects and are especially useful for joining broken parts of an image together. Performing the closing operation is again accomplished by making a call to cv2.morphologyEx, but this time we are going to indicate that our morphological operation is a closing by specifying the cv2.MORPH_CLOSE. Image after applying morphological transformation:

image

Gaussian Blurring

Gaussian smoothing is used to remove noise that approximately follows a Gaussian distribution. The end result is that our image is less blurred, but more “naturally blurred,” than using the average in average blurring. Furthermore, based on this weighting we’ll be able to preserve more of the edges in our image as compared to average smoothing. Gaussian blurring is similar to average blurring, but instead of using a simple mean, we are now using a weighted mean, where neighbourhood pixels that are closer to the central pixel contribute more “weight” to the average. Gaussian smoothing uses a kernel of M X N, where both M and N are odd integers. Image after applying Gaussian blurring:

image

After applying all these image pre-processing techniques, images have been converted into n-dimension array

image

Further 2 more transformations have been applied on this n-dimensional array. The pixel values initially range from 0-255. They are first brought to 0-1 range by dividing all pixel values by 255. Then, they are normalized. Then, the data is shuffled and splitted into training and validation sets. Since the number of samples is not big enough and in deep learning we need large amounts of data and in some cases it is not feasible to collect thousands or millions of images, so data augmentation comes to the rescue. Data Augmentation is a technique that can be used to artificially expand the size of a training set by creating modified data from the existing one. It is a good practice to use data augmentation if you want to prevent overfitting, or the initial dataset is too small to train on, or even if you want to squeeze better performance from your model. In general, data augmentation is frequently used when building a deep learning model. To augment images when using Keras as our deep learning framework we can use ImageDataGenerator (tf.keras.preprocessing.image.ImageDataGenerator) that generates batches of tensor images with real-time data augmentation.

image

image

Testing

A helper function has been made to test the model on test data in which image pre-processing and transformations have been applied to get the final output

image

Result

The model achieves:

  1. Accuracy = 89.13%
  2. Precision = 91%
  3. Recall = 90%
  4. F1-score= 90%

Below is the full report:

image

Owner
Mohit Kaushik
Mohit Kaushik
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
Python package for handwriting and sketching in Jupyter cells

ipysketch A Python package for handwriting and sketching in Jupyter notebooks. Usage A movie is worth a thousand pictures is worth a million words...

Matthias Baer 16 Jan 05, 2023
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up

Harald Scheidl 1.5k Jan 07, 2023
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
pyntcloud is a Python library for working with 3D point clouds.

pyntcloud is a Python library for working with 3D point clouds.

David de la Iglesia Castro 1.2k Jan 07, 2023
Program created with opencv that allows you to automatically count your repetitions on several fitness exercises.

Virtual partner of gym Description Program created with opencv that allows you to automatically count your repetitions on several fitness exercises li

1 Jan 04, 2022
Automatically fishes for you while you are afk :)

Dank-memer-afk-script A simple and quick way to make easy money in Dank Memer! How to use Open a discord channel which has the Dank Memer bot enabled.

Pranav Doshi 9 Nov 11, 2022
Qrcode Attendence System with Opencv and Pyzbar

Setup process Creates a virtual environment (Scripts that ensure executed Python code uses the Python interpreter and site packages installed inside t

Ganesh 5 Aug 01, 2022
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 268 Dec 23, 2022
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want.

Virtual Keyboard With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want. At

Güldeniz Bektaş 5 Jan 23, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. This is the official Roboflow python package that interfaces with the Roboflow API.

Roboflow 52 Dec 23, 2022