Characterizing possible failure modes in physics-informed neural networks.

Overview

Characterizing possible failure modes in physics-informed neural networks

This repository contains the PyTorch source code for the experiments in the manuscript:

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, Michael W. Mahoney. Characterizing possible failure modes in physics-informed neural networks., Neural Information Processing Systems (NeurIPS) 2021.

Introduction

Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models. The typical approach is to incorporate physical domain knowledge as soft constraints on an empirical loss function and use existing machine learning methodologies to train the model. We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs. In particular, we analyze several distinct situations of widespread physical interest, including learning differential equations with convection, reaction, and diffusion operators. We provide evidence that the soft regularization in PINNs, which involves differential operators, can introduce a number of subtle problems, including making the problem ill-conditioned. Importantly, we show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize. We then describe two promising solutions to address these failure modes. The first approach is to use curriculum regularization, where the PINN's loss term starts from a simple PDE regularization, and becomes progressively more complex as the NN gets trained. The second approach is to pose the problem as a sequence-to-sequence learning task, rather than learning to predict the entire space-time at once. Extensive testing shows that we can achieve up to 1-2 orders of magnitude lower error with these methods as compared to regular PINN training.

Installation

Installation of all necessary packages can either be done via poetry or through requirements.txt. For example:

git clone [email protected]:a1k12/characterizing-pinns-failure-modes.git
cd characterizing-pinns-failure-modes
pip install .

Instructions

To run the code for the convection, diffusion, reaction, or reaction-diffusion ('rd') systems with periodic boundary conditions, the following can be run within the 'pbc_examples' folder.

python main_pbc.py [--system] [--seed] [--N_f] [--optimizer_name] [--lr] [--L] [--xgrid] [--nu] [--rho] [--beta] [--u0_str] [--layers] [--net] [--activation] [--loss_style] [--visualize] [--save_model]

Possible arguments:
--system            system of study (default: convection; also supports diffusion, reaction, rd)
--seed              used to reproduce the results (default: 0)
--N_f               number of points to sample from the interior domain (default: 1000)
--optimizer_name    optimizer to use, currently supports L-BFGS
--lr                learning rate (default: 1.0)
--L                 multiplier on the regularization parameter (default: 1.0)
--xgrid             size of the xgrid (default: 256)
--nu                viscosity coefficient for diffusion
--rho               reaction coefficient
--beta              speed of propagation for convection
--u0_str            initial condition (default: 'sin(x)'; also supports 'gauss' for reaction/reaction-diffusion)
--layers            number of layers in the network (default: '50,50,50,50,1')
--net               net architecture (default: 'DNN')
--activation        activation for the network (default: 'tanh')
--loss_style        loss function style (default: 'mse')
--visualize         option to visualize the solution (default: False)
--save_model        option to save the model (default: False)

Citation

This repository has been developed as part of the following paper. We would appreciate it if you would please cite the following paper if you found the library useful for your work:

@article{krishnapriyan2021characterizing,
  title={Characterizing possible failure modes in physics-informed neural networks},
  author={Krishnapriyan, Aditi S. and Gholami, Amir and Zhe, Shandian and Kirby, Robert and Mahoney, Michael W},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Aditi Krishnapriyan
Aditi Krishnapriyan
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos

Hibercraft 459 Dec 26, 2022
Image processing using OpenCv

Image processing using OpenCv Write a program that opens the webcam, and the user selects one of the following on the video: ✅ If the user presses the

M.Najafi 4 Feb 18, 2022
基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化

SimpleRPA 基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化 简介 SimpleRPA是一款python语言编写的开源RPA工具(桌面自动控制工具),用户可以通过配置yaml格式的文件,来实现桌面软件的自动化控制,简化繁杂重复的工作,比如运营人员给用户发消息,

Song Hui 7 Jun 26, 2022
Train custom VR face tracking parameters

Pal Buddy Guy: The anipal's best friend This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You c

7 Dec 12, 2021
python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Danny Crasto 38 Dec 05, 2022
This repo contains a script that allows us to find range of colors in images using openCV, and then convert them into geo vectors.

Vectorizing color range This repo contains a script that allows us to find range of colors in images using openCV, and then convert them into geo vect

Development Seed 9 Jul 27, 2022
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector

Description This is a PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector. Only RBOX part is implemented. Using dice loss

365 Dec 20, 2022
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.

Attention-based OCR Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the tra

Ed Medvedev 933 Dec 29, 2022
A list of hyperspectral image super-solution resources collected by Junjun Jiang

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

Junjun Jiang 301 Jan 05, 2023
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

An Agnostic Object Detection Framework IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-q

airctic 790 Jan 05, 2023
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

PyTorch implementation of Learning by Aligning (ICCV 2021) This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infr

CV Lab @ Yonsei University 30 Nov 05, 2022
Handwritten Number Recognition using CNN and Character Segmentation

Handwritten-Number-Recognition-With-Image-Segmentation Info About this repository This Repository is aimed at reading handwritten images of numbers an

Sparsha Saha 17 Aug 25, 2022
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
a micro OCR network with 0.07mb params.

MicroOCR a micro OCR network with 0.07mb params. Layer (type) Output Shape Param # Conv2d-1 [-1, 64, 8,

william 29 Aug 06, 2022
Some Boring Research About Products Recognition 、Duplicate Img Detection、Img Stitch、OCR

Products Recognition 介绍 商品识别,围绕在复杂的商场零售场景中,识别出货架图像中的商品信息。主要组成部分: 重复图像检测。【更新进度 4/10】 图像拼接。【更新进度 0/10】 目标检测。【更新进度 0/10】 商品识别。【更新进度 1/10】 OCR。【更新进度 1/10】

zhenjieWang 18 Jan 27, 2022
Using Opencv ,based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching

Using Opencv ,this project is based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching ,it will just mask that image . This project ,if used in cctv

1 Feb 13, 2022
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition

CRNN_Tensorflow This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-En

MaybeShewill-CV 1000 Dec 27, 2022