Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

Overview

License


camloop

Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff

Table of Contents

Usage

This is a simple project developed to reduce complexity and time writing boilerplate code when prototyping computer vision applications. Stop worrying about opening/closing video caps, handling key presses, etc, and just focus on doing the cool stuff!

The project was developed in Python 3.8 and tested with physical local webcams. If you end up using it in any other context, please consider letting me know if it worked or not for whatever use case you had :)

Install

The project is distributed by pypi, so just:

$ pip install pycamloop

As usual, conda or venv are recommended to manage your local environments.

Quickstart

To run a webcam loop and process each frame, just define a function that takes as argument the frame as obtained from cv2.VideoCapture's cap() method (i.e: a np.array) and wrap it with the @camloop decorator. You just need to make sure your function takes the frame as an argument, and returns it so the loop can show it:

from camloop import camloop

@camloop()
def grayscale_example(frame):
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    return frame

# calling the function will start the loop and show the results with the cv2.imshow method
grayscale_example()

The window can be exited at any time by pressing "q" on the keyboard. You can also take screenshots at any time by pressing the "s" key. By default they will be saved in the current directory (see configuring the loop for information on how to customize this and other options).

More advanced use cases

Now, let's say that instead of just converting the frame to grayscale and visualizing it, you want to pass some other arguments, perform more complex operations, and/or persist information every loop. All of this can be done inside the function wrapped by the camloop decorator, and external dependencies can be passed as arguments to your function. For example, let's say we want to run a face detector and save the results to a file called "face-detection-results.txt":

from camloop import camloop

# for simplicity, we use cv2's own haar face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")

@camloop()
def face_detection_example(frame, face_cascade, results_fp=None):
    grayscale_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(grayscale_frame, 1.2, 5)
    for bbox in faces:
        x1, y1 = bbox[:2]
        x2 = x1 + bbox[2]
        y2 = y1 + bbox[3]
        cv2.rectangle(frame, (x1, y1), (x2, y2), (180, 0, 180), 5)

    if results_fp is not None:
	    with open(results_fp, 'a+') as f:
	        f.write(f"{datetime.datetime.now().isoformat()} - {len(faces)} face(s) found: {faces}\n")
    return frame

face_detection_example(face_cascade, results_fp="face-detection-results.txt")

Camloop can handle any arguments and keyword arguments you define in your function, as long as the frame is the first one. In calling the wrapped function, pass the extra arguments with the exception of the frame which is handled implicitly.

Configuring the loop

Since most of the boilerplate is now hidden, camloop exposes a configuration object that allows the user to modify several aspects of it's behavior. The options are:

parameter type default description
source int 0 Index of the camera to use as source for the loop (passed to cv2.VideoCapture())
mirror bool False Whether to flip the frames horizontally
resolution tuple[int, int] None Desired resolution (H,W) of the frames. Passed to the cv2.VideoCapture.set method. Default values and acceptance of custom ones depend on the webcam.
output string '.' Directory where to save artifacts by default (ex: captured screenshots)
sequence_format string None Format for rendering sequence of frames. Acceptable formats are "gif" or "mp4". If specified a video/gif will be saved to the output folder
fps float None FPS value used for the rendering of the sequence of frames. If unspecified, the program will try to estimate if from the length of the recording and number of frames
exit_key string 'q' Keyboard key used to exit the loop
screenshot_key string 's' Keyboard key used to capture a screenshot

If you want to use something other than the defaults, define a dictionary object with the desired configuration and pass it to the camloop decorator.

For example, here we want to mirror the frames horizontally, and save an MP4 video of the recording at 23.7 FPS to the test directory:

from camloop import camloop

config = {
    'mirror': True,
    'output': "test/",
    'fps': 23.7,
    'sequence_format': "mp4",
}

@camloop(config)
def grayscale_example(frame):
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    return frame

grayscale_example()

Demo

Included in the repo is a demonstration script that can be run out-of-the-box to verify camloop and see it's main functionalities. There are a few different samples you can check out, including the grayscale and face detection examples seen in this README).

To run the demo, install camloop and clone the repo:

$ pip install pycamloop
$ git clone https://github.com/glefundes/pycamloop.git
$ cd pycamloop/

Then run it by specifying which demo you want and passing any of the optional arguments (python3 demo.py -h for more info on them). In this case, we're mirroring the frames from the "face detection" demo and saving the a video of the recording in the "demo-videos" directory:

$ mkdir demo-videos
$ python3 demo.py face-detection --mirror --save-sequence mp4 -o demo-videos/

About The Project

I work as a computer vision engineer and often find myself having to prototype or debug projects locally using my own webcam as a source. This, of course, means I have to frequently code the same boilerplate OpenCV camera loop in multiple places. Eventually I got tired of copy-pasting the same 20 lines from file to file and decided to write a 100-ish lines package to make my work a little more efficient, less boring and code overall less bloated. That's pretty much it. Also, it was a nice chance to practice playing with decorators.

TODO

  • Verify functionality with other types of video sources (video files, streams, etc)

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Gabriel Lefundes Vieira - [email protected]

Owner
Gabriel Lefundes
Data Scientist, Computer Vision Engineer @ Amigo Edu.
Gabriel Lefundes
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
"Very simple but works well" Computer Vision based ID verification solution provided by LibraX.

ID Verification by LibraX.ai This is the first free Identity verification in the market. LibraX.ai is an identity verification platform for developers

LibraX.ai 46 Dec 06, 2022
Automatically fishes for you while you are afk :)

Dank-memer-afk-script A simple and quick way to make easy money in Dank Memer! How to use Open a discord channel which has the Dank Memer bot enabled.

Pranav Doshi 9 Nov 11, 2022
Single Shot Text Detector with Regional Attention

Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat

Pan He 215 Dec 07, 2022
Using python libraries to track hands

Python-HandTracking Using python libraries to track hands on a camera Uses cv2 and mediapipe libraries custom hand tracking module PyCharm IDE Final E

Martin Matsudaira 1 Dec 17, 2021
Crop regions in napari manually

napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a

Robert Haase 4 Sep 29, 2022
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022
A community-supported supercharged version of paperless: scan, index and archive all your physical documents

Paperless-ngx Paperless-ngx is a document management system that transforms your physical documents into a searchable online archive so you can keep,

5.2k Jan 04, 2023
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.

Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T

27 Jan 08, 2023
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
Recognizing cropped text in natural images.

ASTER: Attentional Scene Text Recognizer with Flexible Rectification ASTER is an accurate scene text recognizer with flexible rectification mechanism.

Baoguang Shi 681 Jan 02, 2023
A facial recognition program that plays a alarm (mp3 file) when a person i seen in the room. A basic theif using Python and OpenCV

Home-Security-Demo A facial recognition program that plays a alarm (mp3 file) when a person is seen in the room. A basic theif using Python and OpenCV

SysKey 4 Nov 02, 2021
Visual Attention based OCR

Attention-OCR Authours: Qi Guo and Yuntian Deng Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to hei

Yuntian Deng 1.1k Jan 02, 2023
Python library to extract tabular data from images and scanned PDFs

Overview ExtractTable - API to extract tabular data from images and scanned PDFs The motivation is to make it easy for developers to extract tabular d

Org. Account 165 Dec 31, 2022
make a better chinese character recognition OCR than tesseract

deep ocr See README_en.md for English installation documentation. 只在ubuntu下面测试通过,需要virtualenv安装,安装路径可自行调整: git clone https://github.com/JinpengLI/deep

Jinpeng 1.5k Dec 28, 2022
QED-C: The Quantum Economic Development Consortium provides these computer programs and software for use in the fields of quantum science and engineering.

Application-Oriented Performance Benchmarks for Quantum Computing This repository contains a collection of prototypical application- or algorithm-cent

SRI International 67 Nov 30, 2022