Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

Overview

License


camloop

Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff

Table of Contents

Usage

This is a simple project developed to reduce complexity and time writing boilerplate code when prototyping computer vision applications. Stop worrying about opening/closing video caps, handling key presses, etc, and just focus on doing the cool stuff!

The project was developed in Python 3.8 and tested with physical local webcams. If you end up using it in any other context, please consider letting me know if it worked or not for whatever use case you had :)

Install

The project is distributed by pypi, so just:

$ pip install pycamloop

As usual, conda or venv are recommended to manage your local environments.

Quickstart

To run a webcam loop and process each frame, just define a function that takes as argument the frame as obtained from cv2.VideoCapture's cap() method (i.e: a np.array) and wrap it with the @camloop decorator. You just need to make sure your function takes the frame as an argument, and returns it so the loop can show it:

from camloop import camloop

@camloop()
def grayscale_example(frame):
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    return frame

# calling the function will start the loop and show the results with the cv2.imshow method
grayscale_example()

The window can be exited at any time by pressing "q" on the keyboard. You can also take screenshots at any time by pressing the "s" key. By default they will be saved in the current directory (see configuring the loop for information on how to customize this and other options).

More advanced use cases

Now, let's say that instead of just converting the frame to grayscale and visualizing it, you want to pass some other arguments, perform more complex operations, and/or persist information every loop. All of this can be done inside the function wrapped by the camloop decorator, and external dependencies can be passed as arguments to your function. For example, let's say we want to run a face detector and save the results to a file called "face-detection-results.txt":

from camloop import camloop

# for simplicity, we use cv2's own haar face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")

@camloop()
def face_detection_example(frame, face_cascade, results_fp=None):
    grayscale_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(grayscale_frame, 1.2, 5)
    for bbox in faces:
        x1, y1 = bbox[:2]
        x2 = x1 + bbox[2]
        y2 = y1 + bbox[3]
        cv2.rectangle(frame, (x1, y1), (x2, y2), (180, 0, 180), 5)

    if results_fp is not None:
	    with open(results_fp, 'a+') as f:
	        f.write(f"{datetime.datetime.now().isoformat()} - {len(faces)} face(s) found: {faces}\n")
    return frame

face_detection_example(face_cascade, results_fp="face-detection-results.txt")

Camloop can handle any arguments and keyword arguments you define in your function, as long as the frame is the first one. In calling the wrapped function, pass the extra arguments with the exception of the frame which is handled implicitly.

Configuring the loop

Since most of the boilerplate is now hidden, camloop exposes a configuration object that allows the user to modify several aspects of it's behavior. The options are:

parameter type default description
source int 0 Index of the camera to use as source for the loop (passed to cv2.VideoCapture())
mirror bool False Whether to flip the frames horizontally
resolution tuple[int, int] None Desired resolution (H,W) of the frames. Passed to the cv2.VideoCapture.set method. Default values and acceptance of custom ones depend on the webcam.
output string '.' Directory where to save artifacts by default (ex: captured screenshots)
sequence_format string None Format for rendering sequence of frames. Acceptable formats are "gif" or "mp4". If specified a video/gif will be saved to the output folder
fps float None FPS value used for the rendering of the sequence of frames. If unspecified, the program will try to estimate if from the length of the recording and number of frames
exit_key string 'q' Keyboard key used to exit the loop
screenshot_key string 's' Keyboard key used to capture a screenshot

If you want to use something other than the defaults, define a dictionary object with the desired configuration and pass it to the camloop decorator.

For example, here we want to mirror the frames horizontally, and save an MP4 video of the recording at 23.7 FPS to the test directory:

from camloop import camloop

config = {
    'mirror': True,
    'output': "test/",
    'fps': 23.7,
    'sequence_format': "mp4",
}

@camloop(config)
def grayscale_example(frame):
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    return frame

grayscale_example()

Demo

Included in the repo is a demonstration script that can be run out-of-the-box to verify camloop and see it's main functionalities. There are a few different samples you can check out, including the grayscale and face detection examples seen in this README).

To run the demo, install camloop and clone the repo:

$ pip install pycamloop
$ git clone https://github.com/glefundes/pycamloop.git
$ cd pycamloop/

Then run it by specifying which demo you want and passing any of the optional arguments (python3 demo.py -h for more info on them). In this case, we're mirroring the frames from the "face detection" demo and saving the a video of the recording in the "demo-videos" directory:

$ mkdir demo-videos
$ python3 demo.py face-detection --mirror --save-sequence mp4 -o demo-videos/

About The Project

I work as a computer vision engineer and often find myself having to prototype or debug projects locally using my own webcam as a source. This, of course, means I have to frequently code the same boilerplate OpenCV camera loop in multiple places. Eventually I got tired of copy-pasting the same 20 lines from file to file and decided to write a 100-ish lines package to make my work a little more efficient, less boring and code overall less bloated. That's pretty much it. Also, it was a nice chance to practice playing with decorators.

TODO

  • Verify functionality with other types of video sources (video files, streams, etc)

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Gabriel Lefundes Vieira - [email protected]

Owner
Gabriel Lefundes
Data Scientist, Computer Vision Engineer @ Amigo Edu.
Gabriel Lefundes
A pkg stiching around view images(4-6cameras) to generate bird's eye view.

AVP-BEV-OPEN Please check our new work AVP_SLAM_SIM A pkg stiching around view images(4-6cameras) to generate bird's eye view! View Demo · Report Bug

Xinliang Zhong 37 Dec 01, 2022
aardio的opencv库

opencv_aardio dll库下载地址:https://github.com/xuncv/opencv-plugin/releases import cv2 img = cv2.imread("./images/Lena.jpg",1) img = cv2.medianBlur(img,5)

71 Dec 31, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Jan 05, 2023
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream vid

Peace 10 Jun 30, 2021
A selectional auto-encoder approach for document image binarization

The code of this repository was used for the following publication. If you find this code useful please cite our paper: @article{Gallego2019, title =

Javier Gallego 89 Nov 18, 2022
An easy to use an (hopefully useful) captcha solution for pyTelegramBotAPI

pyTelegramBotCAPTCHA An easy to use and (hopefully useful) image CAPTCHA soltion for pyTelegramBotAPI. Installation: pip install pyTelegramBotCAPTCHA

29 Dec 26, 2022
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
轻量级公式 OCR 小工具:一键识别各类公式图片,并转换为 LaTeX 格式

QC-Formula | 青尘公式 OCR 介绍 轻量级开源公式 OCR 小工具:一键识别公式图片,并转换为 LaTeX 格式。 支持从 电脑本地 导入公式图片;(后续版本将支持直接从网页导入图片) 公式图片支持 .png / .jpg / .bmp,大小为 4M 以内均可; 支持印刷体及手写体,前

青尘工作室 26 Jan 07, 2023
CNN+LSTM+CTC based OCR implemented using tensorflow.

CNN_LSTM_CTC_Tensorflow CNN+LSTM+CTC based OCR(Optical Character Recognition) implemented using tensorflow. Note: there is No restriction on the numbe

Watson Yang 356 Dec 08, 2022
Awesome Spectral Indices in Python.

Awesome Spectral Indices in Python: Numpy | Pandas | GeoPandas | Xarray | Earth Engine | Planetary Computer | Dask GitHub: https://github.com/davemlz/

David Montero Loaiza 98 Jan 02, 2023
MXNet OCR implementation. Including text recognition and detection.

insightocr Text Recognition Accuracy on Chinese dataset by caffe-ocr Network LSTM 4x1 Pooling Gray Test Acc SimpleNet N Y Y 99.37% SE-ResNet34 N Y Y 9

Deep Insight 99 Nov 01, 2022
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

Clova AI Research 3.2k Jan 04, 2023
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023
This can be use to convert text in a file to handwritten text.

TextToHandwriting This can be used to convert text to handwriting. Clone this project or download the code. Run TextToImage.py give the filename of th

Ashutosh Mahapatra 2 Feb 06, 2022
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 41 Dec 27, 2022