Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

Overview

License


camloop

Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff

Table of Contents

Usage

This is a simple project developed to reduce complexity and time writing boilerplate code when prototyping computer vision applications. Stop worrying about opening/closing video caps, handling key presses, etc, and just focus on doing the cool stuff!

The project was developed in Python 3.8 and tested with physical local webcams. If you end up using it in any other context, please consider letting me know if it worked or not for whatever use case you had :)

Install

The project is distributed by pypi, so just:

$ pip install pycamloop

As usual, conda or venv are recommended to manage your local environments.

Quickstart

To run a webcam loop and process each frame, just define a function that takes as argument the frame as obtained from cv2.VideoCapture's cap() method (i.e: a np.array) and wrap it with the @camloop decorator. You just need to make sure your function takes the frame as an argument, and returns it so the loop can show it:

from camloop import camloop

@camloop()
def grayscale_example(frame):
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    return frame

# calling the function will start the loop and show the results with the cv2.imshow method
grayscale_example()

The window can be exited at any time by pressing "q" on the keyboard. You can also take screenshots at any time by pressing the "s" key. By default they will be saved in the current directory (see configuring the loop for information on how to customize this and other options).

More advanced use cases

Now, let's say that instead of just converting the frame to grayscale and visualizing it, you want to pass some other arguments, perform more complex operations, and/or persist information every loop. All of this can be done inside the function wrapped by the camloop decorator, and external dependencies can be passed as arguments to your function. For example, let's say we want to run a face detector and save the results to a file called "face-detection-results.txt":

from camloop import camloop

# for simplicity, we use cv2's own haar face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")

@camloop()
def face_detection_example(frame, face_cascade, results_fp=None):
    grayscale_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(grayscale_frame, 1.2, 5)
    for bbox in faces:
        x1, y1 = bbox[:2]
        x2 = x1 + bbox[2]
        y2 = y1 + bbox[3]
        cv2.rectangle(frame, (x1, y1), (x2, y2), (180, 0, 180), 5)

    if results_fp is not None:
	    with open(results_fp, 'a+') as f:
	        f.write(f"{datetime.datetime.now().isoformat()} - {len(faces)} face(s) found: {faces}\n")
    return frame

face_detection_example(face_cascade, results_fp="face-detection-results.txt")

Camloop can handle any arguments and keyword arguments you define in your function, as long as the frame is the first one. In calling the wrapped function, pass the extra arguments with the exception of the frame which is handled implicitly.

Configuring the loop

Since most of the boilerplate is now hidden, camloop exposes a configuration object that allows the user to modify several aspects of it's behavior. The options are:

parameter type default description
source int 0 Index of the camera to use as source for the loop (passed to cv2.VideoCapture())
mirror bool False Whether to flip the frames horizontally
resolution tuple[int, int] None Desired resolution (H,W) of the frames. Passed to the cv2.VideoCapture.set method. Default values and acceptance of custom ones depend on the webcam.
output string '.' Directory where to save artifacts by default (ex: captured screenshots)
sequence_format string None Format for rendering sequence of frames. Acceptable formats are "gif" or "mp4". If specified a video/gif will be saved to the output folder
fps float None FPS value used for the rendering of the sequence of frames. If unspecified, the program will try to estimate if from the length of the recording and number of frames
exit_key string 'q' Keyboard key used to exit the loop
screenshot_key string 's' Keyboard key used to capture a screenshot

If you want to use something other than the defaults, define a dictionary object with the desired configuration and pass it to the camloop decorator.

For example, here we want to mirror the frames horizontally, and save an MP4 video of the recording at 23.7 FPS to the test directory:

from camloop import camloop

config = {
    'mirror': True,
    'output': "test/",
    'fps': 23.7,
    'sequence_format': "mp4",
}

@camloop(config)
def grayscale_example(frame):
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    return frame

grayscale_example()

Demo

Included in the repo is a demonstration script that can be run out-of-the-box to verify camloop and see it's main functionalities. There are a few different samples you can check out, including the grayscale and face detection examples seen in this README).

To run the demo, install camloop and clone the repo:

$ pip install pycamloop
$ git clone https://github.com/glefundes/pycamloop.git
$ cd pycamloop/

Then run it by specifying which demo you want and passing any of the optional arguments (python3 demo.py -h for more info on them). In this case, we're mirroring the frames from the "face detection" demo and saving the a video of the recording in the "demo-videos" directory:

$ mkdir demo-videos
$ python3 demo.py face-detection --mirror --save-sequence mp4 -o demo-videos/

About The Project

I work as a computer vision engineer and often find myself having to prototype or debug projects locally using my own webcam as a source. This, of course, means I have to frequently code the same boilerplate OpenCV camera loop in multiple places. Eventually I got tired of copy-pasting the same 20 lines from file to file and decided to write a 100-ish lines package to make my work a little more efficient, less boring and code overall less bloated. That's pretty much it. Also, it was a nice chance to practice playing with decorators.

TODO

  • Verify functionality with other types of video sources (video files, streams, etc)

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Gabriel Lefundes Vieira - [email protected]

Owner
Gabriel Lefundes
Data Scientist, Computer Vision Engineer @ Amigo Edu.
Gabriel Lefundes
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
Crop regions in napari manually

napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a

Robert Haase 4 Sep 29, 2022
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
Rubik's Cube in pygame with OpenGL

Rubik Rubik's Cube in pygame with OpenGL The script show on the screen a Rubik Cube buit with OpenGL. Then I have also implemented all the possible mo

Gabro 2 Apr 15, 2022
Corner-based Region Proposal Network

Corner-based Region Proposal Network CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possibl

xhzdeng 140 Nov 04, 2022
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
Rotational region detection based on Faster-RCNN.

R2CNN_Faster_RCNN_Tensorflow Abstract This is a tensorflow re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detecti

UCAS-Det 581 Nov 22, 2022
Amazing 3D explosion animation using Pygame module.

3D Explosion Animation 💣 💥 🔥 Amazing explosion animation with Pygame. 💣 Explosion physics An Explosion instance is made of a set of Particle objec

Dylan Tintenfich 12 Mar 11, 2022
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
SemTorch

SemTorch This repository contains different deep learning architectures definitions that can be applied to image segmentation. All the architectures a

David Lacalle Castillo 154 Dec 07, 2022
Indonesian ID Card OCR using tesseract OCR

KTP OCR Indonesian ID Card OCR using tesseract OCR KTP OCR is python-flask with tesseract web application to convert Indonesian ID Card to text / JSON

Revan Muhammad Dafa 5 Dec 06, 2021
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
Textboxes implementation with Tensorflow (python)

tb_tensorflow A python implementation of TextBoxes Dependencies TensorFlow r1.0 OpenCV2 Code from Chaoyue Wang 03/09/2017 Update: 1.Debugging optimize

Jayne Shin (신재인) 20 May 31, 2019
Qrcode Attendence System with Opencv and Pyzbar

Setup process Creates a virtual environment (Scripts that ensure executed Python code uses the Python interpreter and site packages installed inside t

Ganesh 5 Aug 01, 2022
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022