Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Related tags

Deep Learnings2cnn
Overview

⚠️ ⚠️ This code is old and does not support the last versions of pytorch! Especially since the change in the fft interface. ⚠️ ⚠️

Spherical CNNs

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariance

Overview

This library contains a PyTorch implementation of the rotation equivariant CNNs for spherical signals (e.g. omnidirectional images, signals on the globe) as presented in [1]. Equivariant networks for the plane are available here.

Dependencies

(commands to install all the dependencies on a new conda environment)

conda create --name cuda9 python=3.6 
conda activate cuda9

# s2cnn deps
#conda install pytorch torchvision cuda90 -c pytorch # get correct command line at http://pytorch.org/
conda install -c anaconda cupy  
pip install pynvrtc joblib

# lie_learn deps
conda install -c anaconda cython  
conda install -c anaconda requests  

# shrec17 example dep
conda install -c anaconda scipy  
conda install -c conda-forge rtree shapely  
conda install -c conda-forge pyembree  
pip install "trimesh[easy]"  

Installation

To install, run

$ python setup.py install

Usage

Please have a look at the examples.

Please cite [1] in your work when using this library in your experiments.

Design choices for Spherical CNN Architectures

Spherical CNNs come with different choices of grids and grid hyperparameters which are on the first look not obviously related to those of conventional CNNs. The s2_near_identity_grid and so3_near_identity_grid are the preferred choices since they correspond to spatially localized kernels, defined at the north pole and rotated over the sphere via the action of SO(3). In contrast, s2_equatorial_grid and so3_equatorial_grid define line-like (or ring-like) kernels around the equator.

To clarify the possible parameter choices for s2_near_identity_grid:

max_beta:

Adapts the size of the kernel as angle measured from the north pole. Conventional CNNs on flat space usually use a fixed kernel size but pool the signal spatially. This spatial pooling gives the kernels in later layers an effectively increased field of view. One can emulate a pooling by a factor of 2 in spherical CNNs by decreasing the signal bandwidth by 2 and increasing max_beta by 2.

n_beta:

Number of rings of the kernel around the equator, equally spaced in [β=0, β=max_beta]. The choice n_beta=1 corresponds to a small 3x3 kernel in conv2d since in both cases the resulting kernel consists of one central pixel and one ring around the center.

n_alpha:

Gives the number of learned parameters of the rings around the pole. These values are per default equally spaced on the azimuth. A sensible number of values depends on the bandwidth and max_beta since a higher resolution or spatial extent allow to sample more fine kernels without producing aliased results. In practice this value is typically set to a constant, low value like 6 or 8. A reduced bandwidth of the signal is thereby counteracted by an increased max_beta to emulate spatial pooling.

The so3_near_identity_grid has two additional parameters max_gamma and n_gamma. SO(3) can be seen as a (principal) fiber bundle SO(3)→S² with the sphere S² as base space and fiber SO(2) attached to each point. The additional parameters control the grid on the fiber in the following way:

max_gamma:

The kernel spans over the fiber SO(2) between γ∈[0, max_gamma]. The fiber SO(2) encodes the kernel responses for every sampled orientation at a given position on the sphere. Setting max_gamma≨2π results in the kernel not seeing the responses of all kernel orientations simultaneously and is in general unfavored. Steerable CNNs [3] usually always use max_gamma=2π.

n_gamma:

Number of learned parameters on the fiber. Typically set equal to n_alpha, i.e. to a low value like 6 or 8.

See the deep model of the MNIST example for an example of how to adapt these parameters over layers.

Feedback

For questions and comments, feel free to contact us: geiger.mario (gmail), taco.cohen (gmail), jonas (argmin.xyz).

License

MIT

References

[1] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Spherical CNNs. International Conference on Learning Representations (ICLR), 2018.

[2] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Convolutional Networks for Spherical Signals. ICML Workshop on Principled Approaches to Deep Learning, 2017.

[3] Taco S. Cohen, Mario Geiger, Maurice Weiler, Intertwiners between Induced Representations (with applications to the theory of equivariant neural networks), ArXiv preprint 1803.10743, 2018.

Owner
Jonas Köhler
PhD student @noegroup - Research Scientist Intern @deepmind
Jonas Köhler
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

1 Dec 30, 2021
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022