Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Overview

UvA Deep Learning Tutorials

Note: To look at the notebooks in a nicer format, visit our RTD website: https://uvadlc-notebooks.readthedocs.io/en/latest/

Course website: https://uvadlc.github.io/
Course edition: Fall 2020 (Oct. 26 - Dec. 14)
Recordings: YouTube Playlist
Author: Phillip Lippe

For this year's course edition, we created a series of Jupyter notebooks that are designed to help you understanding the "theory" from the lectures by seeing corresponding implementations. We will visit various topics such as optimization techniques, graph neural networks, adversarial attacks and normalizing flows (for a full list, see below). The notebooks are there to help you understand the material and teach you details of the PyTorch framework, including PyTorch Lightning.

The notebooks are presented in the second hour of each lecture slot. During the tutorial sessions, we will present the content and explain the implementation of the notebooks. You can decide yourself rather you just want to look at the filled notebook, want to try it yourself, or code along during the practical session. We do not have any mandatory assignments on which you would be graded or similarly. However, we encourage you to get familiar with the notebooks and experiment or extend them yourself.

How to run the notebooks

On this website, you will find the notebooks exported into a HTML format so that you can read them from whatever device you prefer. However, we suggest that you also give them a try and run them yourself. There are three main ways of running the notebooks we recommend:

  • Locally on CPU: All notebooks are stored on the github repository that also builds this website. You can find them here: https://github.com/phlippe/uvadlc_notebooks/tree/master/docs/tutorial_notebooks. The notebooks are designed that you can execute them on common laptops without the necessity of a GPU. We provide pretrained models that are automatically downloaded when running the notebooks, or can manually be downloaoded from this Google Drive. The required disk space for the pretrained models and datasets is less than 1GB. To ensure that you have all the right python packages installed, we provide a conda environment in the same repository.

  • Google Colab: If you prefer to run the notebooks on a different platform than your own computer, or want to experiment with GPU support, we recommend using Google Colab. Each notebook on this documentation website has a badge with a link to open it on Google Colab. Remember to enable GPU support before running the notebook (Runtime -> Change runtime type). Each notebook can be executed independently, and doesn't require you to connect your Google Drive or similar. However, when closing the session, changes might be lost if you don't save it to your local computer or have copied the notebook to your Google Drive beforehand.

  • Lisa cluster: If you want to train your own (larger) neural networks based on the notebooks, you can make use of the Lisa cluster. However, this is only suggested if you really want to train a new model, and use the other two options to go through the discussion and analysis of the models. Lisa might not allow you with your student account to run jupyter notebooks directly on the gpu_shared partition. Instead, you can first convert the notebooks to a script using jupyter nbconvert --to script ...ipynb, and then start a job on Lisa for running the script. A few advices when running on Lisa:

    • Disable the tqdm statements in the notebook. Otherwise your slurm output file might overflow and be several MB large. In PyTorch Lightning, you can do this by setting progress_bar_refresh_rate=0 in the trainer.
    • Comment out the matplotlib plotting statements, or change :code:plt.show() to plt.savefig(...).

Tutorial-Lecture alignment

We will discuss 12 tutorials in total, each focusing on a different aspect of Deep Learning. The tutorials are spread across lectures, and we tried to cover something from every area. You can align the tutorials with the lectures as follows:

  • Lecture 1: Introduction to Deep Learning

    • Guide 1: Working with the Lisa cluster
    • Tutorial 2: Introduction to PyTorch
  • Lecture 2: Modular Learning

    • Tutorial 3: Activation functions
  • Lecture 3: Deep Learning Optimizations

    • Tutorial 4: Optimization and Initialization
  • Lecture 4: Convolutional Neural Networks

  • Lecture 5: Modern ConvNets

    • Tutorial 5: Inception, ResNet and DenseNet
  • Lecture 6: Recurrent Neural Networks

    • Tutorial 6: Transformers and Multi-Head Attention
  • Lecture 7: Graph Neural Networks

    • Tutorial 7: Graph Neural Networks
  • Lecture 8: Deep Generative Models

    • Tutorial 8: Deep Energy Models
  • Lecture 9: Deep Variational Inference

    • Tutorial 9: Deep Autoencoders
  • Lecture 10: Generative Adversarial Networks

    • Tutorial 10: Adversarial Attacks
  • Lecture 11: Advanced Generative Models

    • Tutorial 11: Normalizing Flows
    • Tutorial 12: Autoregressive Image Modeling
  • Lecture 12: Deep Stochastic Models

  • Lecture 13: Bayesian Deep Learning

  • Lecture 14: Deep Dynamics

Feedback, Questions or Contributions

This is the first time we present these tutorials during the Deep Learning course. As with any other project, small bugs and issues are expected. We appreciate any feedback from students, whether it is about a spelling mistake, implementation bug, or suggestions for improvements/additions to the notebooks. Please use the following link to submit feedback, or feel free to reach out to me directly per mail (p dot lippe at uva dot nl), or grab me during any TA session.

Owner
Phillip Lippe
PhD student at University of Amsterdam, QUVA Lab
Phillip Lippe
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023