Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

Overview

English | 简体中文

Why Non-Euclidean Geometry

Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-hop distance between nodes with different color. Now how could we embed these structures in Euclidean space while keeping these distance unchanged?

Actually perfect embedding without distortion, appearing naturally in hyperbolic (negative curvature) or spherical (positive curvature) space, is infeasible in Euclidean space [1].

As shown above, due to the high capacity of modeling complex structured data, e.g. scale-free, hierarchical or cyclic, there has been an growing interest in building deep learning models under non-Euclidean geometry, e.g. link prediction [2], recommendation [3].

What's CurvLearn

In this repository, we provide a framework, named CurvLearn, for training deep learning models in non-Euclidean spaces.

The framework implements the non-Euclidean operations in Tensorflow and remains the similar interface style for developing deep learning models.

Currently, CurvLearn serves for training several recommendation models in Alibaba. We implement CurvLearn on top of our distributed (graph/deep learning) training engines including Euler and x-deeplearning. The figure below shows how the category tree is embedded in hyperbolic space by using CurvLearn.

Why CurvLearn

CurvLearn has the following major features.

  1. Easy-to-Use. Converting a Tensorflow model from Euclidean space to non-Euclidean spaces with CurvLearn is graceful and undemanding, due to the manifold operations are decoupled from model architecture and similar to vanilla Tensorflow operations. For researchers, CurvLearn also reserves lucid interfaces for developing novel manifolds and optimizers.
  2. Comprehensive methods. CurvLearn is the first Tensorflow based non-Euclidean deep learning framework and supports several typical non-Euclidean spaces, e.g. constant curvature and mixed-curvature manifolds, together with necessary manifold operations and optimizers.
  3. Verified by tremendous industrial traffic. CurvLearn is serving on Alibaba's sponsored search platform with billions of online traffic in several key scenarios e.g. matching and cate prediction. Compared to Euclidean models, CurvLearn can bring more revenue and the RPM (revenue per mille) increases more than 1%.

Now we are working on exploring more non-Euclidean methods and integrating operations with Tensorflow. PR is welcomed!

CurvLearn Architecture

Manifolds

We implemented several types of constant curvature manifolds and the mixed-curvature manifold.

  • curvlearn.manifolds.Euclidean - Euclidean space with zero curvature.
  • curvlearn.manifolds.Stereographic - Constant curvature stereographic projection model. The curvature can be positive, negative or zero.
  • curvlearn.manifolds.PoincareBall - The stereographic projection of the Lorentz model with negative curvature.
  • curvlearn.manifolds.ProjectedSphere - The stereographic projection of the sphere model with positive curvature.
  • curvlearn.manifolds.Product - Mixed-curvature space consists of multiple manifolds with different curvatures.

Operations

To build a non-Euclidean deep neural network, we implemented several basic neural network operations. Complex operations can be decomposed into basic operations explicitly or realized in tangent space implicitly.

  • variable(t, c) - Defines a riemannian variable from manifold or tangent space at origin according to its name.
  • to_manifold(t, c, base) - Converts a tensor t in the tangent space of base point to the manifold.
  • to_tangent(t, c, base) - Converts a tensor t in the manifold to the tangent space of base point.
  • weight_sum(tensor_list, a, c) - Computes the sum of tensor list tensor_list with weight list a.
  • mean(t, c, axis) - Computes the average of elements along axis dimension of a tensor t.
  • sum(t, c, axis) - Computes the sum of elements along axis dimension of a tensor t.
  • concat(tensor_list, c, axis) - Concatenates tensor list tensor_list along axis dimension.
  • matmul(t, m, c) - Multiplies tensor t by euclidean matrix m.
  • add(x, y, c) - Adds tensor x and tensor y.
  • add_bias(t, b, c) - Adds a euclidean bias vector b to tensor t.
  • activation(t, c_in, c_out, act) - Computes the value of activation function act for the input tensor t.
  • linear(t, in_dim, out_dim, c_in, c_out, act, scope) - Computes the linear transformation for the input tensor t.
  • distance(src, tar, c) - Computes the squared geodesic/distance between src and tar.

Optimizers

We also implemented several typical riemannian optimizers. Please refer to [4] for more details.

  • curvlearn.optimizers.rsgd - Riemannian stochastic gradient optimizer.
  • curvlearn.optimizers.radagrad - Riemannian Adagrad optimizer.
  • curvlearn.optimizers.radam - Riemannian Adam optimizer.

How to use CurvLearn

To get started with CurvLearn quickly, we provide a simple binary classification model as a quick start and three representative examples for the application demo. Note that the non-Euclidean model is sensitive to the hyper-parameters such as learning rate, loss functions, optimizers, and initializers. It is necessary to tune those hyper-parameters when transferring to other datasets.

Installation

CurvLearn requires tensorflow~=1.15, compatible with both python 2/3.

The preferred way for installing is via pip.

pip install curvlearn

Quick Start

Here we show how to build binary classification model using CurvLearn. Model includes Stereographic manifold, linear operations , radam optimizer, etc.

Instructions and implement details are shown in Quick Start.

HGCN on Link Prediction [2]

HGCN (Hyperbolic Graph Convolutional Neural Network) is the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. Run the command to check the accuracy on the OpenFlight airport dataset. Running environment and performance are listed in hgcn.

python examples/hgcn/train.py

HyperML on Recommendation Ranking [3]

HyperML (Hyperbolic Metric Learning) applies hyperbolic geometry to recommender systems through metric learning approach and achieves state-of-the-art performance on multiple benchmark datasets. Run the command to check the accuracy on the Amazon Kindle-Store dataset. Running environment and performance are listed in hyperml.

python examples/hyperml/train.py

Hyper Tree Pre-train Model

In the real-world, data is often organized in tree-like structure or can be represented hierarchically. It has been proven that hyperbolic deep neural networks have significant advantages over tree-data representation than Euclidean models. In this case, we present a hyperbolic graph pre-train model for category tree in Taobao. The further details including dataset description, model architecture and visualization of results can be found in CateTreePretrain.

python examples/tree_pretrain/run_model.py

References

[1] Bachmann, Gregor, Gary Bécigneul, and Octavian Ganea. "Constant curvature graph convolutional networks." International Conference on Machine Learning. PMLR, 2020.

[2] Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing systems 32 (2019): 4868-4879.

[3] Vinh Tran, Lucas, et al. "Hyperml: A boosting metric learning approach in hyperbolic space for recommender systems." Proceedings of the 13th International Conference on Web Search and Data Mining. 2020.

[4] Bécigneul, Gary, and Octavian-Eugen Ganea. "Riemannian adaptive optimization methods." arXiv preprint arXiv:1810.00760 (2018).

License

This project is licensed under the Apache License, Version 2.0, unless otherwise explicitly stated.

Owner
Alibaba
Alibaba Open Source
Alibaba
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022