This is an open solution to the Home Credit Default Risk challenge ๐Ÿก

Overview

Home Credit Default Risk: Open Solution

Join the chat at https://gitter.im/minerva-ml/open-solution-home-credit license

This is an open solution to the Home Credit Default Risk challenge ๐Ÿก .

More competitions ๐ŸŽ‡

Check collection of public projects ๐ŸŽ , where you can find multiple Kaggle competitions with code, experiments and outputs.

Our goals

We are building entirely open solution to this competition. Specifically:

  1. Learning from the process - updates about new ideas, code and experiments is the best way to learn data science. Our activity is especially useful for people who wants to enter the competition, but lack appropriate experience.
  2. Encourage more Kagglers to start working on this competition.
  3. Deliver open source solution with no strings attached. Code is available on our GitHub repository ๐Ÿ’ป . This solution should establish solid benchmark, as well as provide good base for your custom ideas and experiments. We care about clean code ๐Ÿ˜ƒ
  4. We are opening our experiments as well: everybody can have live preview on our experiments, parameters, code, etc. Check: Home Credit Default Risk ๐Ÿ“ˆ and screens below.
Train and validation results on folds ๐Ÿ“Š LightGBM learning curves ๐Ÿ“Š
train-validation-results-on-folds LightGBM-learning-curves

Disclaimer

In this open source solution you will find references to the neptune.ml. It is free platform for community Users, which we use daily to keep track of our experiments. Please note that using neptune.ml is not necessary to proceed with this solution. You may run it as plain Python script ๐Ÿ .

Note

As of 1.07.2019 we officially discontinued neptune-cli client project making neptune-client the only supported way to communicate with Neptune. That means you should run experiments via python ... command or update loggers to neptune-client. For more information about the new client go to neptune-client read-the-docs page.

How to start?

Learn about our solutions

  1. Check Kaggle forum and participate in the discussions.
  2. Check our Wiki pages ๐Ÿก , where we document our work. See solutions below:
link to code name CV LB link to description
solution 1 chestnut ๐ŸŒฐ ? 0.742 LightGBM and basic features
solution 2 seedling ๐ŸŒฑ ? 0.747 Sklearn and XGBoost algorithms and groupby features
solution 3 blossom ๐ŸŒผ 0.7840 0.790 LightGBM on selected features
solution 4 tulip ๐ŸŒท 0.7905 0.801 LightGBM with smarter features
solution 5 sunflower ๐ŸŒป 0.7950 0.804 LightGBM clean dynamic features
solution 6 four leaf clover ๐Ÿ€ 0.7975 0.806 priv. LB 0.79804, Stacking by feature diversity and model diversity

Start experimenting with ready-to-use code

You can jump start your participation in the competition by using our starter pack. Installation instruction below will guide you through the setup.

Installation (fast track)

  1. Clone repository and install requirements (use Python3.5)
pip3 install -r requirements.txt
  1. Register to the neptune.ml (if you wish to use it)
  2. Run experiment based on LightGBM:

๐Ÿ”ฑ

neptune account login
neptune run --config configs/neptune.yaml main.py train_evaluate_predict_cv --pipeline_name lightGBM

๐Ÿ

python main.py -- train_evaluate_predict_cv --pipeline_name lightGBM

Installation (step by step)

Step by step installation ๐Ÿ–ฅ๏ธ

Hyperparameter Tuning

Various options of hyperparameter tuning are available

  1. Random Search

    configs/neptune.yaml

      hyperparameter_search__method: random
      hyperparameter_search__runs: 100

    src/pipeline_config.py

        'tuner': {'light_gbm': {'max_depth': ([2, 4, 6], "list"),
                                'num_leaves': ([2, 100], "choice"),
                                'min_child_samples': ([5, 10, 15 25, 50], "list"),
                                'subsample': ([0.95, 1.0], "uniform"),
                                'colsample_bytree': ([0.3, 1.0], "uniform"),
                                'min_gain_to_split': ([0.0, 1.0], "uniform"),
                                'reg_lambda': ([1e-8, 1000.0], "log-uniform"),
                                },
                  }

Get involved

You are welcome to contribute your code and ideas to this open solution. To get started:

  1. Check competition project on GitHub to see what we are working on right now.
  2. Express your interest in paticular task by writing comment in this task, or by creating new one with your fresh idea.
  3. We will get back to you quickly in order to start working together.
  4. Check CONTRIBUTING for some more information.

User support

There are several ways to seek help:

  1. Kaggle discussion is our primary way of communication.
  2. Read project's Wiki, where we publish descriptions about the code, pipelines and supporting tools such as neptune.ml.
  3. Submit an issue directly in this repo.
Comments
  • ModuleNotFoundError: No module named 'deepsense'

    ModuleNotFoundError: No module named 'deepsense'

    There are two things that will make the processing of your issue faster:

    1. Make sure that you are using the latest version of the code,
    2. In case of bug issue, it would be nice to provide more technical details such like execution command, error message or script that reproduces your bug.

    Thanks!

    Kamil & Jakub,

    core contributors to the minerva.ml

    opened by poteman 9
  • use lightGBM_stacking pipeline raise error

    use lightGBM_stacking pipeline raise error

    There are two things that will make the processing of your issue faster:

    1. Make sure that you are using the latest version of the code,
    2. In case of bug issue, it would be nice to provide more technical details such like execution command, error message or script that reproduces your bug.

    Thanks!

    Kamil & Jakub,

    core contributors to the minerva.ml

    while I run the script python -W ignore main.py -- train_evaluate_predict_cv --pipeline_name lightGBM_stacking

    it raise error like following:

    2018-08-10 21:03:04 steppy >>> done: initializing experiment directories
    2018-08-10 21:03:04 steppy >>> Step light_gbm_fold_0 initialized
    2018-08-10 21-03-04 home-credit >>> Start pipeline fit and transform on train
    2018-08-10 21:03:04 steppy >>> cleaning cache...
    2018-08-10 21:03:04 steppy >>> cleaning cache done
    Traceback (most recent call last):
      File "main.py", line 82, in <module>
        main()
      File "/opt/anaconda2/envs/python3/lib/python3.6/site-packages/click/core.py", line 722, in __call__
        return self.main(*args, **kwargs)
      File "/opt/anaconda2/envs/python3/lib/python3.6/site-packages/click/core.py", line 697, in main
        rv = self.invoke(ctx)
      File "/opt/anaconda2/envs/python3/lib/python3.6/site-packages/click/core.py", line 1066, in invoke
        return _process_result(sub_ctx.command.invoke(sub_ctx))
      File "/opt/anaconda2/envs/python3/lib/python3.6/site-packages/click/core.py", line 895, in invoke
        return ctx.invoke(self.callback, **ctx.params)
      File "/opt/anaconda2/envs/python3/lib/python3.6/site-packages/click/core.py", line 535, in invoke
        return callback(*args, **kwargs)
      File "main.py", line 78, in train_evaluate_predict_cv
        pipeline_manager.train_evaluate_predict_cv(pipeline_name, model_level, dev_mode, submit_predictions)
      File "/data1/huangzp/kaggle/home_risk_lightgbm/src/pipeline_manager.py", line 37, in train_evaluate_predict_cv
        train_evaluate_predict_cv(pipeline_name, model_level, dev_mode, submit_predictions)
      File "/data1/huangzp/kaggle/home_risk_lightgbm/src/pipeline_manager.py", line 173, in train_evaluate_predict_cv
        train_evaluate_predict_cv_first_level(pipeline_name, dev_mode, submit_predictions)
      File "/data1/huangzp/kaggle/home_risk_lightgbm/src/pipeline_manager.py", line 285, in train_evaluate_predict_cv_first_level
        model_level='first')
      File "/data1/huangzp/kaggle/home_risk_lightgbm/src/pipeline_manager.py", line 428, in _fold_fit_evaluate_predict_loop
        fold_id, pipeline_name, model_level)
      File "/data1/huangzp/kaggle/home_risk_lightgbm/src/pipeline_manager.py", line 517, in _fold_fit_evaluate_loop
        pipeline.fit_transform(train_data)
      File "/opt/anaconda2/envs/python3/lib/python3.6/site-packages/steppy/base.py", line 310, in fit_transform
        step_inputs[input_data_part] = data[input_data_part]
    KeyError: 'input'
    
    opened by ghost 8
  • How to export the feature correlation?

    How to export the feature correlation?

    Dear,

    Could you tell me how to export the feature correlation? I saw some features in your wiki with some correlation scores. I would like to know how can you know the score? By the way, what is the scoring math metric you used? Thanks

    opened by OsloAI 4
  • PermissionError: [WinError 5] Access is denied

    PermissionError: [WinError 5] Access is denied

    Hi. Neptune is a very handy tool and I'm getting to use it. However I encountered some errors.

    It seems Neptune successfully read in the data, there are messages telling me the dataset has been initialized. But when the system wants to do gb training, such permission error happens.

    deepsense.neptune.client_library.threads.channel_values_thread WARNING channel_values_thread.py:389 - _validate() X-coordinate 1278101.8469238281 is not greater than the previous one 1278101.8469238281. Dropping point (x=1278101.8469238281, y=PermissionError: [WinError 5] Access is denied

    Besides, I'm wondering if such runtime warning is normal.

    deepsense.neptune.client_library.threads.channel_values_thread WARNING channel_values_thread.py:389 - _validate() X-coordinate 1278101.8469238281 is not greater than the previous one 1278101.8469238281. Dropping point (x=1278101.8469238281, y= new_handle = steal_handle(parent_pid, pipe_handle) ) for channel stderr. X-coordinates must be strictly increasing for each channel.

    This warning came out every second. Should it be like this?

    Could you please tell me why there is such error?

    opened by MRrollingJerry 4
  • Notebook Updated ?

    Notebook Updated ?

    Hello,

    Thank you for sharing your project, it is interesting ! I have a question regarding the different notebook where there are some preprocessing (cleaning) and creation of new features (hand craft and aggregating). I think the notebook are not updated if we compare to the code. For instance, if we look at the application data, we see 5 cleaning in the code, but in the notebook only two are available. It is forecast to update them ? It is more easy to understand all the data engineering with a notebook than a complete code.

    opened by Shiro-LK 2
  • Add some logger info while reading data

    Add some logger info while reading data

    Pull Request template to Home Credit Default Risk Open Solution

    Code contributions

    Major - and most appreciated - contribution is pull request with feature or bug fix. Each pull request initiates discussion about your code contribution.

    Each pull request should be provided with minimal description about its contents.

    Thanks!

    Jakub & Kamil,

    core contributors to the minerva.ml

    opened by pranayaryal 2
  • KeyError: 'NAME_EDUCATION_TYPE_CODE_GENDER_AMT_CREDIT_min' while running the code

    KeyError: 'NAME_EDUCATION_TYPE_CODE_GENDER_AMT_CREDIT_min' while running the code

    Solution Version: solution 5 | sunflowerย ๐ŸŒป Command used to run the code: neptune run --config configs/neptune.yaml main.py train_evaluate_predict_cv --pipeline_name lightGBM

    Error Message: KeyError: 'NAME_EDUCATION_TYPE_CODE_GENDER_AMT_CREDIT_min' The pops up in the feature_extraction.py file, under the GroupbyAggregateDiffs class and _add_diff_features method. While iterating through self.groupby_aggregations, using this line of code for groupby_cols, specs in self.groupby_aggregations:, the contents of this - self.groupby_aggregations are:

    [(['NAME_EDUCATION_TYPE', 'CODE_GENDER'], [('AMT_CREDIT', 'min'), ('AMT_CREDIT', 'mean'), ('AMT_CREDIT', 'max'), ('AMT_CREDIT', 'sum'), ('AMT_CREDIT', 'var'), ('AMT_ANNUITY', 'min'), ('AMT_ANNUITY', 'mean'), ('AMT_ANNUITY', 'max'), ('AMT_ANNUITY', 'sum'), ('AMT_ANNUITY', 'var'), ('AMT_INCOME_TOTAL', 'min'), ('AMT_INCOME_TOTAL', 'mean'), ('AMT_INCOME_TOTAL', 'max'), ('AMT_INCOME_TOTAL', 'sum'), ('AMT_INCOME_TOTAL', 'var'), ('AMT_GOODS_PRICE', 'min'), ('AMT_GOODS_PRICE', 'mean'), ('AMT_GOODS_PRICE', 'max'), ('AMT_GOODS_PRICE', 'sum'), ('AMT_GOODS_PRICE', 'var'), ('EXT_SOURCE_1', 'min'), ('EXT_SOURCE_1', 'mean'), ('EXT_SOURCE_1', 'max'), ('EXT_SOURCE_1', 'sum'), ('EXT_SOURCE_1', 'var'), ('EXT_SOURCE_2', 'min'), ('EXT_SOURCE_2', 'mean'), ('EXT_SOURCE_2', 'max'), ('EXT_SOURCE_2', 'sum'), ('EXT_SOURCE_2', 'var'), ('EXT_SOURCE_3', 'min'), ('EXT_SOURCE_3', 'mean'), ('EXT_SOURCE_3', 'max'), ('EXT_SOURCE_3', 'sum'), ('EXT_SOURCE_3', 'var'), ('OWN_CAR_AGE', 'min'), ('OWN_CAR_AGE', 'mean'), ('OWN_CAR_AGE', 'max'), ('OWN_CAR_AGE', 'sum'), ('OWN_CAR_AGE', 'var'), ('REGION_POPULATION_RELATIVE', 'min'), ('REGION_POPULATION_RELATIVE', 'mean'), ('REGION_POPULATION_RELATIVE', 'max'), ('REGION_POPULATION_RELATIVE', 'sum'), ('REGION_POPULATION_RELATIVE', 'var'), ('DAYS_REGISTRATION', 'min'), ('DAYS_REGISTRATION', 'mean'), ('DAYS_REGISTRATION', 'max'), ('DAYS_REGISTRATION', 'sum'), ('DAYS_REGISTRATION', 'var'), ('CNT_CHILDREN', 'min'), ('CNT_CHILDREN', 'mean'), ('CNT_CHILDREN', 'max'), ('CNT_CHILDREN', 'sum'), ('CNT_CHILDREN', 'var'), ('CNT_FAM_MEMBERS', 'min'), ('CNT_FAM_MEMBERS', 'mean'), ('CNT_FAM_MEMBERS', 'max'), ('CNT_FAM_MEMBERS', 'sum'), ('CNT_FAM_MEMBERS', 'var'), ('DAYS_ID_PUBLISH', 'min'), ('DAYS_ID_PUBLISH', 'mean'), ('DAYS_ID_PUBLISH', 'max'), ('DAYS_ID_PUBLISH', 'sum'), ('DAYS_ID_PUBLISH', 'var'), ('DAYS_BIRTH', 'min'), ('DAYS_BIRTH', 'mean'), ('DAYS_BIRTH', 'max'), ('DAYS_BIRTH', 'sum'), ('DAYS_BIRTH', 'var'), ('DAYS_EMPLOYED', 'min'), ('DAYS_EMPLOYED', 'mean'), ('DAYS_EMPLOYED', 'max'), ('DAYS_EMPLOYED', 'sum'), ('DAYS_EMPLOYED', 'var')]), (['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE'], [('AMT_CREDIT', 'min'), ('AMT_CREDIT', 'mean'), ('AMT_CREDIT', 'max'), ('AMT_CREDIT', 'sum'), ('AMT_CREDIT', 'var'), ('AMT_ANNUITY', 'min'), ('AMT_ANNUITY', 'mean'), ('AMT_ANNUITY', 'max'), ('AMT_ANNUITY', 'sum'), ('AMT_ANNUITY', 'var'), ('AMT_INCOME_TOTAL', 'min'), ('AMT_INCOME_TOTAL', 'mean'), ('AMT_INCOME_TOTAL', 'max'), ('AMT_INCOME_TOTAL', 'sum'), ('AMT_INCOME_TOTAL', 'var'), ('AMT_GOODS_PRICE', 'min'), ('AMT_GOODS_PRICE', 'mean'), ('AMT_GOODS_PRICE', 'max'), ('AMT_GOODS_PRICE', 'sum'), ('AMT_GOODS_PRICE', 'var'), ('EXT_SOURCE_1', 'min'), ('EXT_SOURCE_1', 'mean'), ('EXT_SOURCE_1', 'max'), ('EXT_SOURCE_1', 'sum'), ('EXT_SOURCE_1', 'var'), ('EXT_SOURCE_2', 'min'), ('EXT_SOURCE_2', 'mean'), ('EXT_SOURCE_2', 'max'), ('EXT_SOURCE_2', 'sum'), ('EXT_SOURCE_2', 'var'), ('EXT_SOURCE_3', 'min'), ('EXT_SOURCE_3', 'mean'), ('EXT_SOURCE_3', 'max'), ('EXT_SOURCE_3', 'sum'), ('EXT_SOURCE_3', 'var'), ('OWN_CAR_AGE', 'min'), ('OWN_CAR_AGE', 'mean'), ('OWN_CAR_AGE', 'max'), ('OWN_CAR_AGE', 'sum'), ('OWN_CAR_AGE', 'var'), ('REGION_POPULATION_RELATIVE', 'min'), ('REGION_POPULATION_RELATIVE', 'mean'), ('REGION_POPULATION_RELATIVE', 'max'), ('REGION_POPULATION_RELATIVE', 'sum'), ('REGION_POPULATION_RELATIVE', 'var'), ('DAYS_REGISTRATION', 'min'), ('DAYS_REGISTRATION', 'mean'), ('DAYS_REGISTRATION', 'max'), ('DAYS_REGISTRATION', 'sum'), ('DAYS_REGISTRATION', 'var'), ('CNT_CHILDREN', 'min'), ('CNT_CHILDREN', 'mean'), ('CNT_CHILDREN', 'max'), ('CNT_CHILDREN', 'sum'), ('CNT_CHILDREN', 'var'), ('CNT_FAM_MEMBERS', 'min'), ('CNT_FAM_MEMBERS', 'mean'), ('CNT_FAM_MEMBERS', 'max'), ('CNT_FAM_MEMBERS', 'sum'), ('CNT_FAM_MEMBERS', 'var'), ('DAYS_ID_PUBLISH', 'min'), ('DAYS_ID_PUBLISH', 'mean'), ('DAYS_ID_PUBLISH', 'max'), ('DAYS_ID_PUBLISH', 'sum'), ('DAYS_ID_PUBLISH', 'var'), ('DAYS_BIRTH', 'min'), ('DAYS_BIRTH', 'mean'), ('DAYS_BIRTH', 'max'), ('DAYS_BIRTH', 'sum'), ('DAYS_BIRTH', 'var'), ('DAYS_EMPLOYED', 'min'), ('DAYS_EMPLOYED', 'mean'), ('DAYS_EMPLOYED', 'max'), ('DAYS_EMPLOYED', 'sum'), ('DAYS_EMPLOYED', 'var')]), (['NAME_FAMILY_STATUS', 'CODE_GENDER'], [('AMT_CREDIT', 'min'), ('AMT_CREDIT', 'mean'), ('AMT_CREDIT', 'max'), ('AMT_CREDIT', 'sum'), ('AMT_CREDIT', 'var'), ('AMT_ANNUITY', 'min'), ('AMT_ANNUITY', 'mean'), ('AMT_ANNUITY', 'max'), ('AMT_ANNUITY', 'sum'), ('AMT_ANNUITY', 'var'), ('AMT_INCOME_TOTAL', 'min'), ('AMT_INCOME_TOTAL', 'mean'), ('AMT_INCOME_TOTAL', 'max'), ('AMT_INCOME_TOTAL', 'sum'), ('AMT_INCOME_TOTAL', 'var'), ('AMT_GOODS_PRICE', 'min'), ('AMT_GOODS_PRICE', 'mean'), ('AMT_GOODS_PRICE', 'max'), ('AMT_GOODS_PRICE', 'sum'), ('AMT_GOODS_PRICE', 'var'), ('EXT_SOURCE_1', 'min'), ('EXT_SOURCE_1', 'mean'), ('EXT_SOURCE_1', 'max'), ('EXT_SOURCE_1', 'sum'), ('EXT_SOURCE_1', 'var'), ('EXT_SOURCE_2', 'min'), ('EXT_SOURCE_2', 'mean'), ('EXT_SOURCE_2', 'max'), ('EXT_SOURCE_2', 'sum'), ('EXT_SOURCE_2', 'var'), ('EXT_SOURCE_3', 'min'), ('EXT_SOURCE_3', 'mean'), ('EXT_SOURCE_3', 'max'), ('EXT_SOURCE_3', 'sum'), ('EXT_SOURCE_3', 'var'), ('OWN_CAR_AGE', 'min'), ('OWN_CAR_AGE', 'mean'), ('OWN_CAR_AGE', 'max'), ('OWN_CAR_AGE', 'sum'), ('OWN_CAR_AGE', 'var'), ('REGION_POPULATION_RELATIVE', 'min'), ('REGION_POPULATION_RELATIVE', 'mean'), ('REGION_POPULATION_RELATIVE', 'max'), ('REGION_POPULATION_RELATIVE', 'sum'), ('REGION_POPULATION_RELATIVE', 'var'), ('DAYS_REGISTRATION', 'min'), ('DAYS_REGISTRATION', 'mean'), ('DAYS_REGISTRATION', 'max'), ('DAYS_REGISTRATION', 'sum'), ('DAYS_REGISTRATION', 'var'), ('CNT_CHILDREN', 'min'), ('CNT_CHILDREN', 'mean'), ('CNT_CHILDREN', 'max'), ('CNT_CHILDREN', 'sum'), ('CNT_CHILDREN', 'var'), ('CNT_FAM_MEMBERS', 'min'), ('CNT_FAM_MEMBERS', 'mean'), ('CNT_FAM_MEMBERS', 'max'), ('CNT_FAM_MEMBERS', 'sum'), ('CNT_FAM_MEMBERS', 'var'), ('DAYS_ID_PUBLISH', 'min'), ('DAYS_ID_PUBLISH', 'mean'), ('DAYS_ID_PUBLISH', 'max'), ('DAYS_ID_PUBLISH', 'sum'), ('DAYS_ID_PUBLISH', 'var'), ('DAYS_BIRTH', 'min'), ('DAYS_BIRTH', 'mean'), ('DAYS_BIRTH', 'max'), ('DAYS_BIRTH', 'sum'), ('DAYS_BIRTH', 'var'), ('DAYS_EMPLOYED', 'min'), ('DAYS_EMPLOYED', 'mean'), ('DAYS_EMPLOYED', 'max'), ('DAYS_EMPLOYED', 'sum'), ('DAYS_EMPLOYED', 'var')]), (['CODE_GENDER', 'ORGANIZATION_TYPE'], [('AMT_ANNUITY', 'mean'), ('AMT_INCOME_TOTAL', 'mean'), ('DAYS_REGISTRATION', 'mean'), ('EXT_SOURCE_1', 'mean')]), (['CODE_GENDER', 'REG_CITY_NOT_WORK_CITY'], [('AMT_ANNUITY', 'mean'), ('CNT_CHILDREN', 'mean'), ('DAYS_ID_PUBLISH', 'mean')]), (['CODE_GENDER', 'NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], [('EXT_SOURCE_1', 'mean'), ('EXT_SOURCE_2', 'mean')]), (['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], [('AMT_CREDIT', 'mean'), ('AMT_REQ_CREDIT_BUREAU_YEAR', 'mean'), ('APARTMENTS_AVG', 'mean'), ('BASEMENTAREA_AVG', 'mean'), ('EXT_SOURCE_1', 'mean'), ('EXT_SOURCE_2', 'mean'), ('EXT_SOURCE_3', 'mean'), ('NONLIVINGAREA_AVG', 'mean'), ('OWN_CAR_AGE', 'mean'), ('YEARS_BUILD_AVG', 'mean')]), (['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], [('ELEVATORS_AVG', 'mean'), ('EXT_SOURCE_1', 'mean')]), (['OCCUPATION_TYPE'], [('AMT_ANNUITY', 'mean'), ('CNT_CHILDREN', 'mean'), ('CNT_FAM_MEMBERS', 'mean'), ('DAYS_BIRTH', 'mean'), ('DAYS_EMPLOYED', 'mean'), ('DAYS_ID_PUBLISH', 'mean'), ('DAYS_REGISTRATION', 'mean'), ('EXT_SOURCE_1', 'mean'), ('EXT_SOURCE_2', 'mean'), ('EXT_SOURCE_3', 'mean')])]
    

    I am assuming that this is where it is combining 'NAME_EDUCATION_TYPE', 'CODE_GENDER', 'AMT_CREDIT', 'min' and the key is missing. I tried to isolate the error message, but the code base is quite large. I figured a community based approach to resolve the bug might be ideal.

    opened by KartikKannapur 2
  • ValueError: No transformer cached credit_card_balance_cleaning_fold_1

    ValueError: No transformer cached credit_card_balance_cleaning_fold_1

    When I run "python main.py -- train_evaluate_predict_cv --pipeline_name XGBoost", I got this error in the title. However, I can run the lightGBM pipeline successfully.

    opened by liyinxiao 1
  • Ming zhang

    Ming zhang

    Pull Request template to Home Credit Default Risk Open Solution

    Code contributions

    Major - and most appreciated - contribution is pull request with feature or bug fix. Each pull request initiates discussion about your code contribution.

    Each pull request should be provided with minimal description about its contents.

    Thanks!

    Jakub & Kamil,

    core contributors to the minerva.ml

    opened by Bowen-Guo 1
  • Update models.py - Neural Network framework

    Update models.py - Neural Network framework

    Added a general framework for a Keras-based neural network (#136)

    Pull Request template to Home Credit Default Risk Open Solution

    Code contributions

    Major - and most appreciated - contribution is pull request with feature or bug fix. Each pull request initiates discussion about your code contribution.

    Each pull request should be provided with minimal description about its contents.

    Thanks!

    Jakub & Kamil,

    core contributors to the minerva.ml

    opened by yotamco100 1
  • CV improved LB not

    CV improved LB not

    Hi guys,

    i have extracted some more features from bureau file, it improved CV from .7950 to 0.7974 ( std 0.0024) but LB drop from .804 to .802. has anyone experienced this before ? i dont use any TARGET related features, and dont think it is overfitting.

    opened by davutpolat 1
  • Best configurations and models used

    Best configurations and models used

    Hello, I would like to use your pipeline described as 'solution 6,' but I don't get which models were used for the 1st level as oof-predictions.

    Also, I would like to know which configurations were used for the 1st level and the 2nd level respectively. In the config file, there are two configuration files (neptune_stacking.yaml and neptune.yaml) and I'm confused which one was used for each level.

    Could you let me know the models and the configurations used for the 1st and the 2nd layer respectively?

    Thank you!!

    opened by kssteven418 0
Releases(solution-6)
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | ์žฅ์š”์—˜ 65 Jan 07, 2023
This is a collection of all challenges in HKCERT CTF 2021

้ฆ™ๆธฏ็ถฒ็ตกไฟๅฎ‰ๆ–ฐ็”Ÿไปฃๅฅชๆ——ๆŒ‘ๆˆฐ่ณฝ 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022