On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

Overview

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing Valentin Khrulkov, Leyla Mirvakhabova, Ivan Oseledets, Artem Babenko

Overview

We replace linear shifts commonly used for image editing with a flow of a trainable Neural ODE in the latent space.

w' = NN(w; \theta)

The RHS of this Neural ODE is trained end-to-end using pre-trained attribute regressors by enforcing

  • change of the desired attribute;
  • invariance of remaining attributes.

Installation and usage

Data

Data required to use the code is available at this dropbox link (2.5Gb).

Path Description
data data hosted on Dropbox
  ├  models pretrained GAN models and attribute regressors
  ├  log pretrained nonlinear edits (Neural ODEs of depth 1) for a variety of attributes on CUB, FFHQ, Places2
  ├  data_to_rectify 100,000 precomputed pairs (w, R[G[w]]); i.e., style vectors and corresponding semantic attributes
  ├  configs parameters of StyleGAN 2 generators for each dataset (n_mlp, channel_width, etc)
    └  inverses precomputed inverses (elements of W-plus) for sample FFHQ images

To download and unpack the data run get_data.sh.

Training

We used torch 1.7 for training; however, the code should work for lower versions as well. An example training script to rectify all the attributes:

CUDA_VISIBLE_DEVICES=0 python train_ode.py --dataset ffhq \
--nb-iter 5000 \
--alpha 8 \
--depth 1

For selected attributes:

CUDA_VISIBLE_DEVICES=0 python train_ode.py --dataset ffhq \
--nb-iter 5000 \
--alpha 8 \
--dir 4 8 15 16 23 32 \
--depth 1

Custom dataset

For training on a custom dataset, you have to provide

  • Generator and attribute regressor weights
  • a dictionary {dataset}_all.pt (stored in data_to_rectify). It has the form {"ws": ws, "labels" : labels} with ws being a torch.Tensor of size N x 512 and labels is a torch.Tensor of size N x D, with D being the number of semantic factors. labels should be constructed by evaluating the corresponding attribute regressor on synthetic images generator(ws[i]). It is used to sample batches for training.

Visualization

Please see explore.ipynb for example visualizations. lib.utils.py contains a utility wrapper useful for building and loading the Neural ODE models (FlowFactory).

Restoring from checkpoint

= 1 corresponds to an MLP with depth layers odeblock.load_state_dict(...) # some style vector (generator.style(z)) w0 = ... # You can directly call odeint with torch.no_grad(): odeint(odeblock.odefunc, w0, torch.FloatTensor([0, 1]).to(device)) # Or utilize the wrapper flow = LatentFlow(odefunc=odeblock.odefunc, device=device, name="Bald") flow.flow(w=w0, t=1) # To flow real images: w = torch.load("inverses/actors.pt").to(device) flow.flow(w, t=6, truncate_real=6) # truncate_real specifies which portion of a W-plus vector to modify # (e.g., first 6 our of 14 vectors) ">
import torch
from lib.utils import FlowFactory, LatentFlow
from torchdiffeq import odeint_adjoint as odeint
device = torch.device("cuda")
flow_factory = FlowFactory(dataset="ffhq", device=device)
odeblock = flow_factory._build_odeblock(depth=1)
# depth = -1 corresponds to a constant right hand side (w' = c)
# depth >= 1 corresponds to an MLP with depth layers
odeblock.load_state_dict(...)

# some style vector (generator.style(z))
w0 = ...

# You can directly call odeint
with torch.no_grad():
    odeint(odeblock.odefunc, w0, torch.FloatTensor([0, 1]).to(device))

# Or utilize the wrapper 
flow = LatentFlow(odefunc=odeblock.odefunc, device=device, name="Bald")
flow.flow(w=w0, t=1)

# To flow real images:
w = torch.load("inverses/actors.pt").to(device)
flow.flow(w, t=6, truncate_real=6)
# truncate_real specifies which portion of a W-plus vector to modify
# (e.g., first 6 our of 14 vectors)

A sample script to generate a movie is

CUDA_VISIBLE_DEVICES=0 python make_movie.py --attribute Bald --dataset ffhq

Examples

FFHQ

Bald Goatee Wavy_Hair Arched_Eyebrows
Bangs Young Blond_Hair Chubby

Places2

lush rugged fog

Citation

Coming soon.

Credits

Owner
Valentin Khrulkov
PhD student
Valentin Khrulkov
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022