《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Related tags

Deep Learningpit
Overview

Rethinking Spatial Dimensions of Vision Transformers

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper

NAVER AI LAB

teaser

Abstract

Vision Transformer (ViT) extends the application range of transformers from language processing to computer vision tasks as being an alternative architecture against the existing convolutional neural networks (CNN). Since the transformer-based architecture has been innovative for computer vision modeling, the design convention towards an effective architecture has been less studied yet. From the successful design principles of CNN, we investigate the role of the spatial dimension conversion and its effectiveness on the transformer-based architecture. We particularly attend the dimension reduction principle of CNNs; as the depth increases, a conventional CNN increases channel dimension and decreases spatial dimensions. We empirically show that such a spatial dimension reduction is beneficial to a transformer architecture as well, and propose a novel Pooling-based Vision Transformer (PiT) upon the original ViT model. We show that PiT achieves the improved model capability and generalization performance against ViT. Throughout the extensive experiments, we further show PiT outperforms the baseline on several tasks such as image classification, object detection and robustness evaluation.

Model performance

We compared performance of PiT with DeiT models in various training settings. Throughput (imgs/sec) values are measured in a machine with single V100 gpu with 128 batche size.

Network FLOPs # params imgs/sec Vanilla +CutMix +DeiT +Distill
DeiT-Ti 1.3 G 5.7 M 2564 68.7 68.5 72.2 74.5
PiT-Ti 0.71 G 4.9 M 3030 71.3 72.6 73.0 74.6
PiT-XS 1.4 G 10.6 M 2128 72.4 76.8 78.1 79.1
DeiT-S 4.6 G 22.1 M 980 68.7 76.5 79.8 81.2
PiT-S 2.9 G 23.5 M 1266 73.3 79.0 80.9 81.9
DeiT-B 17.6 G 86.6 M 303 69.3 75.3 81.8 83.4
PiT-B 12.5 G 73.8 M 348 76.1 79.9 82.0 84.0

Pretrained weights

Model name FLOPs accuracy weights
pit_ti 0.71 G 73.0 link
pit_xs 1.4 G 78.1 link
pit_s 2.9 G 80.9 link
pit_b 12.5 G 82.0 link
pit_ti_distilled 0.71 G 74.6 link
pit_xs_distilled 1.4 G 79.1 link
pit_s_distilled 2.9 G 81.9 link
pit_b_distilled 12.5 G 84.0 link

Dependancies

Our implementations are tested on following libraries with Python 3.6.9 and CUDA 10.1.

torch: 1.7.1
torchvision: 0.8.2
timm: 0.3.4
einops: 0.3.0

Install other dependencies using the following command.

pip install -r requirements.txt

How to use models

You can build PiT models directly

import torch
import pit

model = pit.pit_s(pretrained=False)
model.load_state_dict(torch.load('./weights/pit_s_809.pth'))
print(model(torch.randn(1, 3, 224, 224)))

Or using timm function

import torch
import timm
import pit

model = timm.create_model('pit_s', pretrained=False)
model.load_state_dict(torch.load('./weights/pit_s_809.pth'))
print(model(torch.randn(1, 3, 224, 224)))

To use models trained with distillation, you should use _distilled model and weights.

import torch
import pit

model = pit.pit_s_distilled(pretrained=False)
model.load_state_dict(torch.load('./weights/pit_s_distill_819.pth'))
print(model(torch.randn(1, 3, 224, 224)))

License

Copyright 2021-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Citation

@article{heo2021pit,
    title={Rethinking Spatial Dimensions of Vision Transformers},
    author={Byeongho Heo and Sangdoo Yun and Dongyoon Han and Sanghyuk Chun and Junsuk Choe and Seong Joon Oh},
    journal={arXiv: 2103.16302},
    year={2021},
}
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023