This repository has a implementations of data augmentation for NLP for Japanese.

Related tags

Text Data & NLPdaaja
Overview

daaja

This repository has a implementations of data augmentation for NLP for Japanese:

Install

pip install daaja

How to use

EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks

Command

python -m aug_ja.eda.run --input input.tsv --output data_augmentor.tsv

The format of input.tsv is as follows:

1	この映画はとてもおもしろい
0	つまらない映画だった

In Python

from aug_ja.eda import EasyDataAugmentor
augmentor = EasyDataAugmentor(alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, p_rd=0.1, num_aug=4)
text = "日本語でデータ拡張を行う"
aug_texts = augmentor.augments(text)
print(aug_texts)
# ['日本語でを拡張データ行う', '日本語でデータ押広げるを行う', '日本語でデータ拡張を行う', '日本語で智見拡張を行う', '日本語でデータ拡張を行う']

An Analysis of Simple Data Augmentation for Named Entity Recognition

Command

python -m aug_ja.ner_sda.run --input input.tsv --output data_augmentor.tsv

The format of input.tsv is as follows:

	O
	O
田中	B-PER
	O
いい	O
ます	O

In Python

from daaja.ner_sda import SimpleDataAugmentationforNER
tokens_list = [
    ["私", "は", "田中", "と", "いい", "ます"],
    ["筑波", "大学", "に", "所属", "して", "ます"],
    ["今日", "から", "筑波", "大学", "に", "通う"],
    ["茨城", "大学"],
]
labels_list = [
    ["O", "O", "B-PER", "O", "O", "O"],
    ["B-ORG", "I-ORG", "O", "O", "O", "O"],
    ["B-DATE", "O", "B-ORG", "I-ORG", "O", "O"],
    ["B-ORG", "I-ORG"],
]
augmentor = SimpleDataAugmentationforNER(tokens_list=tokens_list, labels_list=labels_list,
                                            p_power=1, p_lwtr=1, p_mr=1, p_sis=1, p_sr=1, num_aug=4)
tokens = ["吉田", "さん", "は", "株式", "会社", "A", "に", "出張", "予定", "だ"]
labels = ["B-PER", "O", "O", "B-ORG", "I-ORG", "I-ORG", "O", "O", "O", "O"]
augmented_tokens_list, augmented_labels_list = augmentor.augments(tokens, labels)
print(augmented_tokens_list)
# [['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '志す', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '大学', '大学', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '筑波', '大学', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '予定', 'だ']]
print(augmented_labels_list)
# [['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O']]

Reference

Comments
  • too many progress bars

    too many progress bars

    When I use EasyDataAugmentor in the train process, there are too many progress bars in the console.

    So, can you make this line 19 tqdm selectable on-off when we define EasyDataAugmentor? https://github.com/kajyuuen/daaja/blob/12835943868d43f5c248cf1ea87ab60f67a6e03d/daaja/flows/sequential_flow.py#L19

    opened by Yongtae723 6
  • from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentorにてエラー

    from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentorにてエラー

    daajaをpipインストール後、from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentorを行うと、 以下のエラーとなる。 ConnectionError: HTTPConnectionPool(host='compling.hss.ntu.edu.sg', port=80): Max retries exceeded with url: /wnja/data/1.1/wnjpn.db.gz (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f3b6a6cced0>: Failed to establish a new connection: [Errno 110] Connection timed out'))

    opened by naoki1213mj 5
  • is it possible to use on GPU device?

    is it possible to use on GPU device?

    Hi!

    thank you for the great library. when I train with this augmentation, this takes so much more time than forward and backward process.

    therefore, can we possibly use this augmentation on GPU to save time?

    thank you

    opened by Yongtae723 3
  • Bump joblib from 1.1.0 to 1.2.0

    Bump joblib from 1.1.0 to 1.2.0

    Bumps joblib from 1.1.0 to 1.2.0.

    Changelog

    Sourced from joblib's changelog.

    Release 1.2.0

    • Fix a security issue where eval(pre_dispatch) could potentially run arbitrary code. Now only basic numerics are supported. joblib/joblib#1327

    • Make sure that joblib works even when multiprocessing is not available, for instance with Pyodide joblib/joblib#1256

    • Avoid unnecessary warnings when workers and main process delete the temporary memmap folder contents concurrently. joblib/joblib#1263

    • Fix memory alignment bug for pickles containing numpy arrays. This is especially important when loading the pickle with mmap_mode != None as the resulting numpy.memmap object would not be able to correct the misalignment without performing a memory copy. This bug would cause invalid computation and segmentation faults with native code that would directly access the underlying data buffer of a numpy array, for instance C/C++/Cython code compiled with older GCC versions or some old OpenBLAS written in platform specific assembly. joblib/joblib#1254

    • Vendor cloudpickle 2.2.0 which adds support for PyPy 3.8+.

    • Vendor loky 3.3.0 which fixes several bugs including:

      • robustly forcibly terminating worker processes in case of a crash (joblib/joblib#1269);

      • avoiding leaking worker processes in case of nested loky parallel calls;

      • reliability spawn the correct number of reusable workers.

    Release 1.1.1

    • Fix a security issue where eval(pre_dispatch) could potentially run arbitrary code. Now only basic numerics are supported. joblib/joblib#1327
    Commits
    • 5991350 Release 1.2.0
    • 3fa2188 MAINT cleanup numpy warnings related to np.matrix in tests (#1340)
    • cea26ff CI test the future loky-3.3.0 branch (#1338)
    • 8aca6f4 MAINT: remove pytest.warns(None) warnings in pytest 7 (#1264)
    • 067ed4f XFAIL test_child_raises_parent_exits_cleanly with multiprocessing (#1339)
    • ac4ebd5 MAINT add back pytest warnings plugin (#1337)
    • a23427d Test child raises parent exits cleanly more reliable on macos (#1335)
    • ac09691 [MAINT] various test updates (#1334)
    • 4a314b1 Vendor loky 3.2.0 (#1333)
    • bdf47e9 Make test_parallel_with_interactively_defined_functions_default_backend timeo...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Implement Data Augmentation using Pre-trained Transformer Models

    Implement Data Augmentation using Pre-trained Transformer Models

    opened by kajyuuen 0
  • Implement Contextual Augmentation

    Implement Contextual Augmentation

    opened by kajyuuen 0
  • Implement MixText

    Implement MixText

    opened by kajyuuen 0
Releases(v0.0.7)
Owner
Koga Kobayashi
Koga Kobayashi
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super

LASSL: LAnguage Self-Supervised Learning 116 Dec 27, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Text editor on python to convert english text to malayalam(Romanization/Transiteration).

Manglish Text Editor This is a simple transiteration (romanization ) program which is used to convert manglish to malayalam (converts njaan to ഞാൻ ).

Merin Rose Tom 1 May 11, 2022
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022