BLEURT is a metric for Natural Language Generation based on transfer learning.

Related tags

Deep Learningbleurt
Overview

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation

BLEURT is an evaluation metric for Natural Language Generation. It takes a pair of sentences as input, a reference and a candidate, and it returns a score that indicates to what extent the candidate is fluent and conveys the mearning of the reference. It is comparable to sentence-BLEU, BERTscore, and COMET.

BLEURT is a trained metric, that is, it is a regression model trained on ratings data. The model is based on BERT and RemBERT. This repository contains all the code necessary to use it and/or fine-tune it for your own applications. BLEURT uses Tensorflow, and it benefits greatly from modern GPUs (it runs on CPU too).

An overview of BLEURT can be found in our our blog post. Further details are provided in the ACL paper BLEURT: Learning Robust Metrics for Text Generation and our EMNLP paper.

Installation

BLEURT runs in Python 3. It relies heavily on Tensorflow (>=1.15) and the library tf-slim (>=1.1). You may install it as follows:

pip install --upgrade pip  # ensures that pip is current
git clone https://github.com/google-research/bleurt.git
cd bleurt
pip install .

You may check your install with unit tests:

python -m unittest bleurt.score_test
python -m unittest bleurt.score_not_eager_test
python -m unittest bleurt.finetune_test
python -m unittest bleurt.score_files_test

Using BLEURT - TL;DR Version

The following commands download the recommended checkpoint and run BLEURT:

# Downloads the BLEURT-base checkpoint.
wget https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip .
unzip BLEURT-20.zip

# Runs the scoring.
python -m bleurt.score_files \
  -candidate_file=bleurt/test_data/candidates \
  -reference_file=bleurt/test_data/references \
  -bleurt_checkpoint=BLEURT-20

The files bleurt/test_data/candidates and references contain test sentences, included by default in the BLEURT distribution. The input format is one sentence per line. You may replace them with your own files. The command outputs one score per sentence pair.

Oct 8th 2021 Update: we upgraded the recommended checkpoint to BLEURT-20, a more accurate, multilingual model 🎉 .

Using BLEURT - the Long Version

Command-line tools and APIs

Currently, there are three methods to invoke BLEURT: the command-line interface, the Python API, and the Tensorflow API.

Command-line interface

The simplest way to use BLEURT is through command line, as shown below.

python -m bleurt.score_files \
  -candidate_file=bleurt/test_data/candidates \
  -reference_file=bleurt/test_data/references \
  -bleurt_checkpoint=bleurt/test_checkpoint \
  -scores_file=scores

The files candidates and references contain one sentence per line (see the folder test_data for the exact format). Invoking the command should produce a file scores which contains one BLEURT score per sentence pair. Alternatively you may use a JSONL file, as follows:

python -m bleurt.score_files \
  -sentence_pairs_file=bleurt/test_data/sentence_pairs.jsonl \
  -bleurt_checkpoint=bleurt/test_checkpoint

The flags bleurt_checkpoint and scores_file are optional. If bleurt_checkpoint is not specified, BLEURT will default to a test checkpoint, based on BERT-Tiny, which is very light but also very inaccurate (we recommend against using it). If scores_files is not specified, BLEURT will use the standard output.

The following command lists all the other command-line options:

python -m bleurt.score_files -helpshort

Python API

BLEURT may be used as a Python library as follows:

from bleurt import score

checkpoint = "bleurt/test_checkpoint"
references = ["This is a test."]
candidates = ["This is the test."]

scorer = score.BleurtScorer(checkpoint)
scores = scorer.score(references=references, candidates=candidates)
assert type(scores) == list and len(scores) == 1
print(scores)

Here again, BLEURT will default to BERT-Tiny if no checkpoint is specified.

BLEURT works both in eager_mode (default in TF 2.0) and in a tf.Session (TF 1.0), but the latter mode is slower and may be deprecated in the near future.

Tensorflow API

BLEURT may be embedded in a TF computation graph, e.g., to visualize it on the Tensorboard while training a model.

The following piece of code shows an example:

import tensorflow as tf
# Set tf.enable_eager_execution() if using TF 1.x.

from bleurt import score

references = tf.constant(["This is a test."])
candidates = tf.constant(["This is the test."])

bleurt_ops = score.create_bleurt_ops()
bleurt_out = bleurt_ops(references=references, candidates=candidates)

assert bleurt_out["predictions"].shape == (1,)
print(bleurt_out["predictions"])

The crucial part is the call to score.create_bleurt_ops, which creates the TF ops.

Checkpoints

A BLEURT checkpoint is a self-contained folder that contains a regression model and some information that BLEURT needs to run. BLEURT checkpoints can be downloaded, copy-pasted, and stored anywhere. Furthermore, checkpoints are tunable, which means that they can be fine-tuned on custom ratings data.

BLEURT defaults to the test checkpoint, which is very inaccaurate. We recommend using BLEURT-20 for results reporting. You may use it as follows:

wget https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip .
unzip BLEURT-20.zip
python -m bleurt.score_files \
  -candidate_file=bleurt/test_data/candidates \
  -reference_file=bleurt/test_data/references \
  -bleurt_checkpoint=BLEURT-20

The checkpoints page provides more information about how these checkpoints were trained, as well as pointers to smaller models. Additionally, you can fine-tune BERT or existing BLEURT checkpoints on your own ratings data. The checkpoints page describes how to do so.

Interpreting BLEURT Scores

Different BLEURT checkpoints yield different scores. The currently recommended checkpoint BLEURT-20 generates scores which are roughly between 0 and 1 (sometimes less than 0, sometimes more than 1), where 0 indicates a random output and 1 a perfect one. As with all automatic metrics, BLEURT scores are noisy. For a robust evaluation of a system's quality, we recommend averaging BLEURT scores across the sentences in a corpus. See the WMT Metrics Shared Task for a comparison of metrics on this aspect.

In principle, BLEURT should measure adequacy: most of its training data was collected by the WMT organizers who asked to annotators "How much do you agree that the system output adequately expresses the meaning of the reference?" (WMT Metrics'18, Graham et al., 2015). In practice however, the answers tend to be very correlated with fluency ("Is the text fluent English?"), and we added synthetic noise in the training set which makes the distinction between adequacy and fluency somewhat fuzzy.

Language Coverage

Currently, BLEURT-20 was tested on 13 languages: Chinese, Czech, English, French, German, Japanese, Korean, Polish, Portugese, Russian, Spanish, Tamil, Vietnamese (these are languages for which we have held-out ratings data). In theory, it should work for the 100+ languages of multilingual C4, on which RemBERT was trained.

If you tried any other language and would like to share your experience, either positive or negative, please send us feedback!

Speeding Up BLEURT

We describe three methods to speed up BLEURT, and how to combine them.

Batch size tuning

You may specify the flag -bleurt_batch_size which determines the number of sentence pairs processed at once by BLEURT. The default value is 16, you may want to increase or decrease it based on the memory available and the presence of a GPU (we typically use 16 when using a laptop without a GPU, 100 on a workstation with a GPU).

Length-based batching

Length-based batching is an optimization which consists in batching examples that have a similar a length and cropping the resulting tensor, to avoid wasting computations on padding tokens. This technique oftentimes results in spectacular speed-ups (typically, ~2-10X). It is described here, and it was successfully used by BERTScore in the field of learned metrics.

You can enable length-based by specifying -batch_same_length=True when calling score_files with the command line, or by instantiating a LengthBatchingBleurtScorer instead of BleurtScorer when using the Python API.

Distilled models

We provide pointers to several compressed checkpoints on the checkpoints page. These models were obtained by distillation, a lossy process, and therefore the outputs cannot be directly compared to those of the original BLEURT model (though they should be strongly correlated).

Putting everything together

The following command illustrates how to combine these three techniques, speeding up BLEURT by an order of magnitude (up to 20X with our configuration) on larger files:

# Downloads the 12-layer distilled model, which is ~3.5X smaller.
wget https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip .
unzip BLEURT-20-D12.zip

python -m bleurt.score_files \
  -candidate_file=bleurt/test_data/candidates \
  -reference_file=bleurt/test_data/references \
  -bleurt_batch_size=100 \            # Optimization 1.
  -batch_same_length=True \           # Optimization 2.
  -bleurt_checkpoint=BLEURT-20-D12    # Optimization 3.

Reproducibility

You may find information about how to work with ratings from the WMT Metrics Shared Task, reproduce results from our ACL paper, and a selection of models from our EMNLP paper here.

How to Cite

Please cite our ACL paper:

@inproceedings{sellam2020bleurt,
  title = {BLEURT: Learning Robust Metrics for Text Generation},
  author = {Thibault Sellam and Dipanjan Das and Ankur P Parikh},
  year = {2020},
  booktitle = {Proceedings of ACL}
}
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022