HINet: Half Instance Normalization Network for Image Restoration

Related tags

Deep LearningHINet
Overview

PWC PWC PWC PWC PWC PWC PWC

HINet: Half Instance Normalization Network for Image Restoration

Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen

Paper: https://arxiv.org/abs/2105.06086

In this paper, we explore the role of Instance Normalization in low-level vision tasks. Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to boost the performance of image restoration networks. Based on HIN Block, we design a simple and powerful multi-stage network named HINet, which consists of two subnetworks. With the help of HIN Block, HINet surpasses the state-of-the-art (SOTA) on various image restoration tasks. For image denoising, we exceed it 0.11dB and 0.28 dB in PSNR on SIDD dataset, with only 7.5% and 30% of its multiplier-accumulator operations (MACs), 6.8 times and 2.9 times speedup respectively. For image deblurring, we get comparable performance with 22.5% of its MACs and 3.3 times speedup on REDS and GoPro datasets. For image deraining, we exceed it by 0.3 dB in PSNR on the average result of multiple datasets with 1.4 times speedup. With HINet, we won 1st place on the NTIRE 2021 Image Deblurring Challenge - Track2. JPEG Artifacts, with a PSNR of 29.70.

Network Architecture

arch

Installation

This implementation based on BasicSR which is a open source toolbox for image/video restoration tasks.

python 3.6.9
pytorch 1.5.1
cuda 10.1
git clone https://github.com/megvii-model/HINet
cd HINet
pip install -r requirements.txt
python setup.py develop --no_cuda_ext

Image Restoration Tasks


Image denoise, deblur, derain.

Image Denoise - SIDD dataset (Coming soon)
Image Deblur - GoPro dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/GoPro

    • download the train set in ./datasets/GoPro/train and test set in ./datasets/GoPro/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/GoPro/
      ./datasets/GoPro/train/
      ./datasets/GoPro/train/input/
      ./datasets/GoPro/train/target/
      ./datasets/GoPro/test/
      ./datasets/GoPro/test/input/
      ./datasets/GoPro/test/target/
    • python scripts/data_preparation/gopro.py

      • crop the train image pairs to 512x512 patches.
  • eval

    • download pretrained model to ./experiments/pretrained_models/HINet-GoPro.pth
    • python basicsr/test.py -opt options/test/REDS/HINet-GoPro.yml
  • train

    • python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/GoPro/HINet.yml --launcher pytorch
Image Deblur - REDS dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/REDS

    • download the train / val set from train_blur, train_sharp, val_blur, val_sharp to ./datasets/REDS/ and unzip them.

    • it should be like

      ./datasets/
      ./datasets/REDS/
      ./datasets/REDS/val/
      ./datasets/REDS/val/val_blur_jpeg/
      ./datasets/REDS/val/val_sharp/
      ./datasets/REDS/train/
      ./datasets/REDS/train/train_blur_jpeg/
      ./datasets/REDS/train/train_sharp/
      
    • python scripts/data_preparation/reds.py

      • flatten the folders and extract 300 validation images.
  • eval

    • download pretrained model to ./experiments/pretrained_models/HINet-REDS.pth
    • python basicsr/test.py -opt options/test/REDS/HINet-REDS.yml
  • train

    • python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/REDS/HINet.yml --launcher pytorch
Image Derain - Rain13k dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/Rain13k

    • download the train set and test set (refer to MPRNet)

    • it should be like

      ./datasets/
      ./datasets/Rain13k/
      ./datasets/Rain13k/train/
      ./datasets/Rain13k/train/input/
      ./datasets/Rain13k/train/target/
      ./datasets/Rain13k/test/
      ./datasets/Rain13k/test/Test100/
      ./datasets/Rain13k/test/Rain100H/
      ./datasets/Rain13k/test/Rain100L/
      ./datasets/Rain13k/test/Test2800/
      ./datasets/Rain13k/test/Test1200/
      
  • eval

    • download pretrained model to ./experiments/pretrained_models/HINet-Rain13k.pth

    • For Test100:

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Test100.yml
    • For Rain100H

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Rain100H.yml
    • For Rain100L

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Rain100L.yml
    • For Test2800

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Test2800.yml
    • For Test1200

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Test1200.yml
  • train

    • python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train_rain.py -opt options/train/Rain13k/HINet.yml --launcher pytorch

Results


Some of the following results are higher than the original paper as we optimized some hyper-parameters.

NTIRE2021 Deblur Track2 ResultSIDD ResultGoPro Result
REDDS ResultRain13k Result

Citations

If HINet helps your research or work, please consider citing HINet.

@inproceedings{chen2021hinet,
  title={HINet: Half Instance Normalization Network for Image Restoration},
  author={Liangyu Chen and Xin Lu and Jie Zhang and Xiaojie Chu and Chengpeng Chen},
  booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected] .

A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023